СПОСОБ РЕГУЛИРОВАНИЯ СООТНОШЕНИЯ КОМПОНЕНТОВ ТОПЛИВА В ГИБРИДНОМ РАКЕТНОМ ДВИГАТЕЛЕ Российский патент 2006 года по МПК F02K9/26 F02K9/72 

Описание патента на изобретение RU2274761C2

Изобретение относится к гибридным ракетным двигателям (ГРД), в частности к физическим способам регулирования тяги и соотношения компонентов топлива в камере сгорания, и может быть использовано в системах управления тягой ГРД.

Известен способ регулирования тяги ракетного двигателя твердого топлива (РДТТ) [Пат. 2175399 РФ, МПК F 02 К 9/26. Способ регулирования скорости горения высокоэнергетичной конденсированной системы / Г.Ф.Клякин, В.А.Таранушич, И.В. Хоружий (РФ). - Заявлено 29.07.99; Опубл. 27.10.01, Бюл. №30], основанный на электротермическом изменении скорости горения высокоэнергетической конденсированной системы (твердого ракетного топлива). Принципиальными отличиями этого способа, разработанного для регулирования тяги твердотопливных ракетных двигателей (РДТТ) и газогенераторов (ГГ), являются:

- в твердом ракетном топливе (ТРТ или высокоэнергетическая конденсированная система - ВКС) горючие и окислительные компоненты топлива заключены в едином (моноблочном) заряде; соотношение между горючими и окислительными компонентами остается постоянной величиной и изменить его в процессе горения невозможно;

- электрический ток пропускают через реакционную зону самостоятельно горящей высокоэнергетической конденсированной системы, под действием которого нелинейно меняется кинетика начальных многостадийных окислительных реакций в ВКС и физический процесс изменения скорости горения имеет электрохимическую природу.

Наиболее близким к предлагаемому способу по своим физическим признакам является способ регулирования тяги в ГРД [Алемасов В.Е. и др. Теория ракетных двигателей. М.: Машиностроение, 1980, стр.482-483] путем изменения топливоподачи жидкого компонента в зону горения твердого компонента и перепуска его части в зону дожигания генераторного газа в предсопловой объем камеры сгорания. Однако этот способ регулирования тяги, определяемый в частности массовым расходом газификации твердотопливного блока, может сопровождаться изменением соотношения между компонентами топлива в газовой фазе продуктов сгорания, ухудшением полноты сгорания и снижением удельного импульса двигателя.

Задачей изобретения является регулирование тяги ГРД с возможностью сохранения во всем диапазоне оптимального соотношения между расходами горючего и окислителя в камере сгорания.

Поставленная задача решается с помощью нагрева электрическим током поверхности газификации твердофазного компонента топлива, посредством системы металлических электродов в виде фольги или сеток, установленной в твердофазном компоненте топлива, изменяют его массовый расход и поддерживают в допустимом диапазоне соотношения расходов между горючими и окислительными компонентами топлива на различных режимах работы двигателя.

На чертеже показан фрагмент принципиальной схемы ГРД с дожиганием генераторного газа путем перепуска жидкого компонента топлива m0 в предсопловой объем камеры сгорания, позволяющий реализовать независимое (внешнее) от термодинамических условий в камере регулирование массового расхода твердофазного блока и в результате поддерживать оптимальное соотношение расходов между горючим и окислителем с максимальными значениями удельного импульса при различных давлениях в ГРД. Принципиальная схема включает в себя пневмогидравлическую систему (ПГС) с регуляторами расходов р0 и p1, форсуночную головку 2, блок форсунок 3 дожигания генераторного газа в предсопловой части 4 камеры сгорания 1. В твердофазном компоненте топлива 5 установлена система плоских металлических электродов 6, посредством которых электропроводная зона газификации 8 твердофазного компонента подключена к управляемому источнику тока 7. Управление исполнительные устройствами (регуляторы расходов р1 и р2, источник тока 7) выполняется блоком управления расходом топлива 9 (датчики обратных связей и верхний уровень всей системы управления ГРД не приведены).

Реализация способа заключается в том, что в процессе работы ГРД сохраняется в определенных диапазонах регулирование топливоподачи жидкого компонента топлива посредством р0 и р1 через форсуночные системы 2 и 3 в камеру сгорания 1, при этом твердотопливный блок 5, обладающий высокими объемными диэлектрическими свойствами, в условиях газификации (пиролиза) его поверхностный слой 8 имеет повышенную электропроводность. Под действием широтно-импульсной модуляции постоянного тока с помощью задающего воздействия p2 управляют действующим значением электрического тока, пропускаемого посредством электродов 6, через электропроводную зону 8 и омическим нагревом дополнительно изменяют скорость газификации топливного блока ГРД. Взаимосвязанное регулирование системой управления внутридвигательных параметров ГРД: действующего значения тока источника 7 и топливоподачи пневмогидравлической системы, регулируют скорость газификации твердого компонента, сохраняя оптимальное соотношение компонентов в продуктах сгорания и, соответственно, максимальные значения удельного импульса при различных давлениях в камере сгорания двигателя.

Это позволяет, например, при уменьшении (дросселировании) тяги ГРД пропорционально снижать массовый расход обоих компонентов в камере сгорания, сохраняя удельный импульс на максимальных значениях при текущих давлениях в камере двигателя. Таким образом, с точки зрения регулирования внутридвигательных параметров ГРД при фиксированных расходах жидкого компонента массовое соотношение между компонентами топлива на стадии смесеобразования в газовой фазе камеры дополнительно зависит еще от величины нагрева электрическим током поверхности газификации твердофазного блока. Число и компоновка электродов определяются внутренней баллистикой ГРД, проводимостью поверхности термического разложения твердофазного компонента и выходными электрическими параметрами управляемого источника тока, интегрированного в систему регулирования тяги двигателя.

Похожие патенты RU2274761C2

название год авторы номер документа
СПОСОБ УВЕЛИЧЕНИЯ ТЯГИ ГИБРИДНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2015
  • Решетников Станислав Михайлович
  • Зырянов Илья Андреевич
  • Будин Артемий Геннадьевич
  • Позолотин Александр Павлович
RU2598984C2
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2014
  • Архипов Владимир Афанасьевич
  • Бондарчук Сергей Сергеевич
  • Ворожцов Александр Борисович
  • Жуков Александр Степанович
  • Певченко Борис Васильевич
  • Савельева Лилия Алексеевна
RU2569960C1
СПОСОБ ПОДАВЛЕНИЯ ВИБРАЦИОННОГО ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧНЫХ КОНДЕНСИРОВАННЫХ СИСТЕМ 2001
  • Хоружий И.В.
RU2208694C1
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2012
  • Шулев Игорь Станиславович
  • Карташев Александр Леонидович
RU2511986C2
СПОСОБ УВОДА ОТДЕЛИВШЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ С ОРБИТЫ ПОЛЕЗНОЙ НАГРУЗКИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Трушляков Валерий Иванович
  • Лемперт Давид Борисович
  • Лесняк Иван Юрьевич
RU2518918C2
СПОСОБ РЕГУЛИРОВАНИЯ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧНОЙ КОНДЕНСИРОВАННОЙ СИСТЕМЫ 1999
  • Клякин Г.Ф.
  • Таранушич В.А.
  • Хоружий И.В.
RU2175399C2
Способ определения скорости горения твердого топлива в потоке газа 2020
  • Архипов Владимир Афанасьевич
  • Жуков Александр Степанович
  • Зарко Владимир Егорович
  • Борисов Борис Владимирович
RU2749473C1
ЗАРЯД СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2009
  • Хоружий Игорь Владимирович
RU2425245C2
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2007
  • Губертов Арнольд Михайлович
  • Миронов Вадим Всеволодович
  • Голлендер Руфина Георгиевна
  • Давыденко Николай Андреевич
  • Волков Николай Николаевич
  • Цацуев Сергей Михайлович
RU2359145C1
СПОСОБ ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Трушляков Валерий Иванович
  • Курочкин Андрей Сергеевич
RU2522536C1

Реферат патента 2006 года СПОСОБ РЕГУЛИРОВАНИЯ СООТНОШЕНИЯ КОМПОНЕНТОВ ТОПЛИВА В ГИБРИДНОМ РАКЕТНОМ ДВИГАТЕЛЕ

Способ регулирования соотношения компонентов топлива в гибридном ракетном двигателе включает управление топливоподачей жидкого компонента топлива пневмогидравлической системой. Массовый расход твердофазного компонента топлива изменяют с помощью регулирования действующего значения электрического тока, пропускаемого через реакционную зону газификации. Электрический ток пропускают через реакционную зону газификации посредством установленной в твердофазном компоненте топлива системы металлических электродов в виде фольги или сеток. При этом поддерживают в допустимом диапазоне соотношения расходов между горючими и окислительными компонентами топлива на различных режимах работы двигателя. Изобретение позволит сохранить оптимальное соотношение между расходами горючего и окислителя в камере сгорания при регулировании тяги гибридного ракетного двигателя. 1 ил.

Формула изобретения RU 2 274 761 C2

Способ регулирования соотношения компонентов топлива в гибридном ракетном двигателе, включающий управление топливоподачей жидкого компонента топлива пневмогидравлической системой, отличающийся тем, что с помощью регулирования действующего значения электрического тока, пропускаемого через реакционную зону газификации твердофазного компонента топлива, посредством системы металлических электродов в виде фольги или сеток, установленной в твердофазном компоненте топлива, изменяют его массовый расход и поддерживают в допустимом диапазоне соотношения расходов между горючими и окислительными компонентами топлива на различных режимах работы двигателя.

Документы, цитированные в отчете о поиске Патент 2006 года RU2274761C2

АЛЕМАСОВ В.Е и др
Теория ракетных двигателей
- М.: Машиностроение, 1980, с.483, рис.39.4
СПОСОБ РЕГУЛИРОВАНИЯ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧНОЙ КОНДЕНСИРОВАННОЙ СИСТЕМЫ 1999
  • Клякин Г.Ф.
  • Таранушич В.А.
  • Хоружий И.В.
RU2175399C2
СПОСОБ ПОДАВЛЕНИЯ ВИБРАЦИОННОГО ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧНЫХ КОНДЕНСИРОВАННЫХ СИСТЕМ 2001
  • Хоружий И.В.
RU2208694C1
Термосно-паровая кухня 1921
  • Чаплин В.М.
SU72A1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА С ЭЛЕКТРОМАГНИТНЫМ РЕГУЛИРОВАНИЕМ ИНТЕНСИВНОСТИ ГОРЕНИЯ ТОПЛИВА 2000
  • Козлов А.Н.
  • Хусаинов С.А.
  • Рыбаков А.П.
  • Росляков В.В.
  • Закевич И.А.
  • Родченков С.Н.
RU2174186C1
US 3392524 A, 16.07.1968
US 3529425 A, 22.09.1970
US 4345427 A, 24.08.1982
US 4587805 A, 13.05.1986
US 4630437 A, 23.12.1986
US 3136119 А, 09.06.1964
US 3677011 А, 18.07.1972
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 274 761 C2

Авторы

Хоружий Игорь Владимирович

Касаткина Ольга Ивановна

Даты

2006-04-20Публикация

2004-02-24Подача