ЗАРЯД СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА Российский патент 2011 года по МПК F02K9/26 

Описание патента на изобретение RU2425245C2

Изобретение относится к энергетическим установкам на твердом ракетном топливе (ЭУТТ), в частности к структуре смесевых твердотопливных зарядов (энергетических конденсированных систем - ЭКС), и может быть использовано в управляемых ЭУТТ с непрерывно регулируемыми выходными параметрами.

Известна конструкция баллиститных зарядов ЭКС, армированных металлической сеткой, изготавливаемых методом рулонирования (намоткой) из порохового полотна толщиной 2-6 мм и металлической сетки с последующей склейкой изделия для получения требуемых физико-механических свойств [Фиошина М.А. Основы химии и технологии порохов и твердых ракетных топлив: Учеб. пособие. / Фиошина М.А., Русин Д.Л. - М.: РХТУ им. Д.И.Менделеева, 2004. - 264 с.].

Недостатками таких зарядов при повышении общей механической прочности являются пониженные энергомассовые характеристики баллиститных ЭКС. Кроме этого армирование одиночной металлической сеткой не позволяет пропускать через поверхность горения топлива электрический ток и управлять скоростью горения заряда в процессе работы ЭУТТ.

Наиболее близкими по технической сущности к предлагаемому изобретению являются заряды смесевого твердого ракетного топлива (ТРТ) с горением по внутреннему каналу со встроенной поперечной или продольной электродной системой из металлической фольги или сетки, адгезионно скрепленной с топливной массой в объеме заряда, для реализации способа управления скоростью горения ЭКС в ЭУТТ (патент RU №2175399).

Недостатком таких зарядов смесевого ТРТ с поперечной и продольной электродными системами является повышенное результирующее электрическое сопротивление поверхности горения твердотопливного заряда, так как они имеют неразвитую (малую) поверхность электрического контакта с реакционной зоной конденсированной фазы топлива. Это требует увеличения количества электродов в топливной массе либо применения мощных высоковольтных источников напряжения с целью непрерывного регулирования в необходимом диапазоне расходных или тяговых характеристик ЭУТТ. В процессе работы ЭУТТ заряд ТРТ находится под действием внутрикамерного давления газовой фазы продуктов сгорания в напряженно-деформированном состоянии. При этом простое увеличение количества электродов по схемам с продольной или поперечной сегментацией заряда приводит к ухудшению его энергетических характеристик (возрастанию металлизации топлива и нарушению кислородного баланса) и принципиально важной потере механической прочности с возможностью разрушения таких зарядов в процессе работы ЭУТТ. Применение в системе управления ЭУТТ высоких напряжений также нежелательно с точки зрения снижения надежности ее работы в сложных условиях эксплуатации.

Задачей изобретения является создание конструкции заряда смесевого твердого ракетного топлива со встроенной металлической электродной системой:

- без изменения оптимального (стехиометрического) массового соотношения между горючими и окислительными компонентами топлива, влияющего на энергетику топлива и в результате удельный импульс ЭУТТ;

- обладающего требуемыми физико-механическими свойствами: высокой механической прочностью на разрыв, сжатие, устойчивостью к образованию трещин в условиях действующих на ЭУТТ вибраций, перегрузок и пульсаций давления в камере сгорания;

- с электродной системой, имеющей развитую поверхностью контакта с реакционной зоной, позволяющей применять низковольтный источник тока в системе регулирования скорости горения ЭКС.

При этом технический результат заключается в достижении требуемых физико-механических свойств заряда и минимального результирующего сопротивления поверхности горения без изменения оптимального (стехиометрического) массового соотношения компонентов.

Технический результат достигается в заряде смесевого твердого ракетного топлива со встроенной металлической электродной системой, образованной из листов металлической фольги, в котором в отличие от наиболее близкого аналога электродная система выполнена из множества спиралевидно расположенных листов фольги, покрытых слоем полимеризованной топливной массы и используемых в качестве горючего компонента топлива. Покрытые слоем полимеризованной топливной массы спиралевидно расположенные листы фольги образуют моноблочную многослойную конструкцию цилиндрической формы с горением по внутреннему каналу и торцевой поверхности, а толщина слоя полимеризованной топливной массы и толщина фольги выбраны из условия достижения стехиометрического баланса между компонентами топлива.

Заряд смесевого ТРТ может быть выполнен с горением по различным поверхностям, например с горением по торцевой поверхности или по внутреннему каналу. На фиг.1 представлено конструктивное исполнение заряда смесевого твердого ракетного топлива с горением по внутреннему каналу и торцевой поверхности, который подключен к внешней системе регулирования внутрикамерных процессов ЭУТТ. На фиг.2 представлен вид заряда в поперечном сечении плоскостью относительно его продольной оси (фиг.1, сечение "А-А").

Структура заряда смесевого ТРТ состоит из множества отдельных листов металлической фольги 1, каждый из которых покрыт слоем неметаллизированной топливной массы 2, и спирально рулонированных с образованием внутреннего канала 3 и открытой торцевой поверхности 4 в моноблочную многослойную конструкцию цилиндрической формы, забронированную теплозащитным покрытием 5 по не горящим поверхностям. Металлические листы фольги 1 образуют в заряде электродную систему и имеют проволочные выводы 6 из камеры сгорания 7 для подключения к внешней системе управления 8 внутрикамерными процессами ЭУТТ.

Торцы листов фольги 1 с топливными слоями 2 образуют периметр внутреннего канала горения заряда. Поэтому количество листов электродов в смесевом заряде, покрытых слоем адгезионно скрепленной топливной массы, определяется требованием соблюдения кислородного баланса и параметрами уравнения спиралей.

Толщина топливного межэлектродного слоя 2 и толщина фольги выбраны из условия достижения стехиометрического кислородного баланса между компонентами в ЭКС, так же как если металлическая фольга была равномерно распределена по всему объему заряда в виде порошка. То есть металлическая фольга в смесевом заряде выступает в качестве энергодобавки и имеет расчетное массовое содержание.

Данная структура моноблочного заряда, состоящего из множества спирально расположенных металлических листов фольги, покрытых слоем топливной массы ЭКС расчетной толщины, изготавливается новыми, отличными от известных технологическими методами.

Процесс горения заряда происходит по внутреннему незабронированному каналу 3 и торцевой поверхности 4 в камере сгорания 7 управляемой ЭУТТ. В зависимости от задающего воздействия X(t) блок управления скоростью горения ЭКС 8, входящий в систему управления ЭУТТ, изменяет скорость горения (вектор - u) смесевого заряда ТРТ и, соответственно, расходные и тяговые характеристики ЭУТТ по требуемому закону. В условиях работы ЭУТТ заряд смесевого ТРТ сохраняет свою структуру и работоспособность в соответствии с заявленными свойствами до полного выгорания, находясь под давлением газовой фазы продуктов сгорания, перегрузок, вибраций и различных других внутренних и внешних возмущений.

В моноблочной спиральной структуре смесевого заряда множество отдельных, адгезионно связанных с топливной массой листов металлической фольги выполняют многофункциональную роль:

- являются энергетической добавкой в ЭКС, т.е. точно дозированным горючим компонентом в рецептуре топлива для повышения температуры продуктов сгорания и, соответственно, удельного импульса ЭУТТ;

- обеспечивают прохождение электрического тока через электропроводную поверхность горения (реакционную зону) заряда, воздействующего на скорость горения топлива в текущих термодинамических условиях;

- образуют развитую поверхность электрического контакта с реакционной зоной ЭКС за счет спиралевидного расположения электродов, выходящих на поверхность горения топлива, и в результате минимизируют полное электрическое сопротивление реакционной зоны заряда;

- обеспечивают заряду максимальную механическую прочность при сохранении стехиометрического химического состава топлива по сравнению с прототипом (патент RU №2175399).

Похожие патенты RU2425245C2

название год авторы номер документа
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2018
  • Граменицкий Михаил Дмитриевич
  • Гусев Артем Васильевич
  • Липаткин Алексей Михайлович
  • Мухранский Владимир Михайлович
RU2711892C1
ТВЕРДОТОПЛИВНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2014
  • Архипов Владимир Афанасьевич
  • Волков Сергей Анатольевич
  • Ревягин Леонид Николаевич
  • Жарова Ирина Константиновна
RU2569539C1
ВОСПЛАМЕНИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ РАКЕТНЫХ ТОПЛИВ 1996
  • Сарабьев В.И.
  • Емельянов В.Н.
  • Левина Н.А.
  • Киневский П.Б.
RU2133725C1
ИНТЕГРАЛЬНЫЙ РАКЕТНО-ПРЯМОТОЧНЫЙ ДВИГАТЕЛЬ (ИРПДТ) 2006
  • Верхоломов Вячеслав Кириллович
  • Суриков Евгений Валентинович
  • Яновский Леонид Самойлович
  • Граменицкий Михаил Дмитриевич
  • Животов Николай Павлович
  • Рыбаулин Сергей Николаевич
RU2325544C2
ГАЗОГЕНЕРАТОР НА ТВЕРДОМ ТОПЛИВЕ 1995
  • Барсуков В.Д.
  • Голдаев С.В.
  • Минькова Н.П.
RU2100064C1
БРОНИРОВАННЫЙ ВКЛАДНОЙ ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2009
  • Калашников Владимир Иванович
  • Ключников Александр Николаевич
  • Кононов Борис Владимирович
  • Милёхин Юрий Михайлович
  • Самойленко Александр Федорович
RU2395480C1
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2005
  • Колесников Виталий Иванович
  • Козьяков Алексей Васильевич
  • Никитин Василий Тихонович
  • Молчанов Владимир Федорович
  • Пупин Николай Афанасьевич
  • Власов Сергей Яковлевич
  • Александров Михаил Зиновьевич
  • Красильников Федор Сергеевич
  • Летов Борис Павлович
  • Куценко Геннадий Васильевич
RU2305201C1
ПИРОТЕХНИЧЕСКАЯ СИСТЕМА ВОСПЛАМЕНЕНИЯ СОПРОВОЖДЕНИЯ 2000
  • Лукин А.Н.
RU2178093C2
СПОСОБ СКРЕПЛЕНИЯ БРОНИРОВАННОГО ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ТОРЦЕВОГО ГОРЕНИЯ С КОРПУСОМ РАКЕТНОГО ДВИГАТЕЛЯ 2007
  • Куценко Геннадий Васильевич
  • Красильников Федор Сергеевич
  • Молчанов Владимир Федорович
  • Козьяков Алексей Васильевич
  • Никитин Василий Тихонович
  • Пупин Николай Афанасьевич
  • Бахтина Ирина Анатольевна
  • Хворостова Светлана Валерьевна
  • Летов Борис Павлович
  • Власов Сергей Яковлевич
RU2333187C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА (ВАРИАНТЫ) 2009
  • Молчанов Владимир Федорович
  • Козьяков Алексей Васильевич
  • Андреев Владимир Андреевич
  • Швыкин Юрий Сергеевич
  • Армишева Наталья Александровна
  • Кислицын Алексей Анатольевич
  • Нешев Сергей Сергеевич
  • Амарантов Георгий Николаевич
  • Власов Сергей Яковлевич
RU2412369C1

Иллюстрации к изобретению RU 2 425 245 C2

Реферат патента 2011 года ЗАРЯД СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Изобретение относится к энергетическим установкам на твердом ракетном топливе, в частности к структуре смесевых твердотопливных зарядов, и может быть использовано в управляемых энергетических установках на твердом ракетном топливе с электротермическим регулированием внутрикамерных процессов. Заряд смесевого твердого ракетного топлива включает встроенную металлическую электродную систему, образованную из множества спиралевидно расположенных листов фольги, покрытых слоем полимеризованной топливной массы и используемых в качестве горючего компонента топлива. Покрытые слоем полимеризованной топливной массы спиралевидно расположенные листы фольги образуют моноблочную многослойную конструкцию цилиндрической формы с горением по внутреннему каналу и торцевой поверхности. Толщина слоя полимеризованной топливной массы и толщина фольги выбраны из условия достижения стехиометрического баланса между компонентами топлива. Изобретение позволяет повысить механическую прочность заряда при сохранении стехиометрического баланса между компонентами топлива. 2 ил.

Формула изобретения RU 2 425 245 C2

Заряд смесевого твердого ракетного топлива со встроенной металлической электродной системой, образованной из листов металлической фольги, отличающийся тем, что электродная система выполнена из множества спиралевидно расположенных листов фольги, покрытых слоем полимеризованной топливной массы и используемых в качестве горючего компонента топлива, при этом покрытые слоем полимеризованной топливной массы спиралевидно расположенные листы фольги образуют моноблочную многослойную конструкцию цилиндрической формы с горением по внутреннему каналу и торцевой поверхности, а толщина слоя полимеризованной топливной массы и толщина фольги выбраны из условия достижения стехиометрического баланса между компонентами топлива.

Документы, цитированные в отчете о поиске Патент 2011 года RU2425245C2

US 3248875 А, 03.05.1966
US 5616884 А, 01.04.1997
СПОСОБ РЕГУЛИРОВАНИЯ СКОРОСТИ ГОРЕНИЯ ВЫСОКОЭНЕРГЕТИЧНОЙ КОНДЕНСИРОВАННОЙ СИСТЕМЫ 1999
  • Клякин Г.Ф.
  • Таранушич В.А.
  • Хоружий И.В.
RU2175399C2
US 4587805 А, 13.05.1986
СПОСОБ РЕГУЛИРОВАНИЯ СООТНОШЕНИЯ КОМПОНЕНТОВ ТОПЛИВА В ГИБРИДНОМ РАКЕТНОМ ДВИГАТЕЛЕ 2004
  • Хоружий Игорь Владимирович
  • Касаткина Ольга Ивановна
RU2274761C2
US 2956401 A, 18.10.1960.

RU 2 425 245 C2

Авторы

Хоружий Игорь Владимирович

Даты

2011-07-27Публикация

2009-08-26Подача