Изобретение относится к области машиностроения и может быть использовано при создании вращающихся электрических машин с магнитными подшипниками, например турбогенераторов с воздушным охлаждением, имеющих замкнутый цикл вентиляции.
Известна электрическая машина с воздушным охлаждением с замкнутой системой вентиляции, имеющая вентиляторы на валу ротора и встроенный охладитель и снабженная подшипниками скольжения или качения (А.Е.Алексеев. Конструкция электрических машин. Государственное энергетическое издательство. М.-Л., 1958, стр.19, рис.1-6). Недостаток такой конструкции заключается в том, что автономная вентиляция возбуждения не соединена с общим вентиляционным циклом турбогенератора.
Более близким к заявленному решению является электрическая машина (заявка DE 19731313 А1, МПК Н 02 К 5/16), содержащая корпус, внутри которого расположены статор, ротор с обмоткой, опорные магнитные подшипники, на которых установлен вал ротора. Внутри корпуса расположены также охладители, вентиляторы и установленный на валу ротора возбудитель. Электрическая машина имеет систему вентиляции с охлаждением магнитных подшипников и возбудителя посредством вентиляционного корпуса, охватывающего собственно машину, магнитные подшипники и возбудитель. Общим с заявляемым изобретением является наличие в электрической машине с замкнутой системой вентиляции корпуса, на котором закреплен статор, расположение внутри корпуса статора и ротора с обмоткой, вал которого установлен на опорных магнитных подшипниках, наличие встроенных внутри корпуса охладителей. Как и в заявляемом изобретении, электрическая машина имеет в своем составе вентиляторы и установленный на валу ротора возбудитель.
Недостатками конструкции по прототипу является неудобство в сборке и в обслуживании подшипников и возбудителя, так как общий корпус с вентиляционными перегородками охватывает перечисленные узлы, препятствует доступу к ним обслуживающего персонала и приводит к необходимости предусматривать сложные дросселирующие устройства в системе циркуляции воздуха для правильного распределения охлаждающего воздуха между отдельными узлами.
Техническим результатом изобретения является:
- достижение удобства сборки и обслуживания подшипников и возбудителя, настройки системы охлаждения,
- минимизация геометрических размеров каждого из корпусов при увеличении их жесткости и, как следствие, возможность экономии материалов,
- более эффективное охлаждение подшипников и возбудителя путем организации наилучшим образом движения вентиляционных потоков, при этом имеет место улучшение охлаждения при расходе меньших объемов воздуха,
- возможность автономного охлаждения магнитных подшипников во время отсутствия основного вентиляционного потока (при невращающемся роторе электрической машины) путем соединения корпусов магнитных подшипников с выносными вентиляторами,
- наличие автономных корпусов на магнитных подшипниках и возбудителе позволяет устанавливать в них дополнительные охладители воздуха, улучшая температурный режим указанных устройств.
Технический результат достигается тем, что в электрической машине с магнитными подшипниками и замкнутой системой вентиляции, содержащей корпус, внутри которого жестко закреплен статор, внутри статора расположен ротор с обмоткой, вал которого установлен на указанных магнитных подшипниках, имеющей в своем составе вентиляторы и установленный на валу ротора возбудитель, согласно изобретению, корпус машины охватывает статор и ротор, а магнитные подшипники и возбудитель снабжены каждый собственными корпусами, интегрированными в систему вентиляции электрической машины с помощью воздуховодов, которые соединяют корпус машины с корпусами магнитных подшипников, корпус машины с корпусом возбудителя.
При необходимости дросселирование воздуха осуществляется путем подбора сечений самих воздуховодов без специальных дросселирующих устройств.
Для обеспечения самовентиляции вентиляторы устанавливают на роторе.
Воздуховоды к магнитным подшипникам и возбудителю могут быть встроены в фундаментную раму самой машины, а возможность дросселирования осуществлена путем подбора сечений воздуховода расчетным путем.
Для обеспечения автономного охлаждения корпуса подшипников могут быть соединены с выносным вентилятором, а в корпусах каждого из подшипников и в корпусе возбудителя могут быть установлены автономные охладители.
Благодаря новому техническому решению в заявляемой конструкции электрической машины достигнут комплексный технический результат.
Удобство сборки, обслуживания подшипников и возбудителя и настройки вентиляции обеспечивается благодаря тому, что к каждому из магнитных подшипников, возбудителю и воздуховодам имеется свободный доступ, не загроможденный общим корпусом. Дополнительным преимуществом является также то, что появляется возможность расположить воздуховоды подшипников и возбудителя в фундаментной раме.
Благодаря тому, что электрическая машина, магнитные подшипники и возбудитель имеют обособленные корпуса, к которым подведены воздуховоды, достигается организация воздушных потоков внутри каждого индивидуального корпуса, обеспечивающая более эффективное охлаждение. При этом за счет подбора расчетным путем сечений самих воздуховодов осуществляется дросселирование, т.е. подача необходимого и достаточного для эффективного охлаждения потока воздуха. В то время как в прототипе необходима установка специальных дросселирующих устройств.
Преимуществом изобретения является также возможность подачи под корпуса магнитных подшипников относительно малого расхода охлаждающего воздуха, когда электрическая машина не вращается, а магнитные подшипники включены для левитации неподвижного ротора. Наличие обособленных корпусов на магнитных подшипниках и возбудителе позволяет устанавливать в них дополнительные охладители воздуха, улучшая температурный режим указанных устройств.
Сущность изобретения поясняется примером конкретного выполнения, показанным на фиг.1-5.
На фиг.1 показана электрическая машина (турбогенератор) с замкнутой системой самовентиляции, образованной с помощью корпуса 1, охватывающего статор 2 и ротор 3, и вентиляторов 4, расположенных на роторе, содержащая охладители 5, выносные опорные магнитные подшипники 6 и возбудитель на валу 7. Магнитные подшипники и возбудитель имеют собственные вентиляционные корпуса 8, 9. Вентиляция подшипников и возбудителя интегрирована в общую систему вентиляции турбогенератора посредством воздуховодов 10 и 11, которые встроены в фундаментную раму турбогенератора 12. Необходимые дросселирующие устройства встраиваются в эти воздуховоды.
При работе турбогенератора его вентиляция обеспечивается циркуляцией воздуха внутри корпуса 1 под воздействием вращающихся вентиляторов 4, часть охлаждающего воздуха ответвляется и поступает по воздуховодам 10 и 11 к подшипникам и возбудителю, в которых вентиляция осуществляется посредством собственных корпусов 8 и 9.
Наличие собственных корпусов на подшипниках и возбудителе создает удобство для доступа обслуживающего персонала, и на каждом из перечисленных узлов могут проводиться профилактические работы без разборки самой машины. В случае, если машина не вращается, а магнитный подвес ротора необходим, то есть магнитные подшипники включены в сеть электрического питания, а вентиляция машин отсутствует, может быть применена вентиляция от выносного вентилятора относительно малой производительности 13, имеющего автономный привод. Этот вентилятор связан с подшипниками внешним трубопроводом.
В случае, если температура общего вентиляционного потока слишком высокая, в корпусе каждого магнитного подшипника (фиг.2) и в корпусе возбудителя (фиг.3) могут быть встроены охладители воздуха 14, что может являться дополнительным преимуществом в работе всего агрегата.
Причем в зависимости от конкретных условий охлаждения дополнительные воздухоохладители могут охлаждать воздух, поступающий в подшипники и возбудитель (фиг.2 и 3) из генератора или поступающий из подшипников и возбудителя (фиг.4 и 5) в турбогенератор, либо совмещать варианты, показанные на фигурах 2 и 3.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ГАЗОВОГО ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ И ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2013 |
|
RU2524160C1 |
СПОСОБ ГАЗОВОГО ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ И ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2004 |
|
RU2282927C1 |
СПОСОБ ГАЗОВОГО ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ И ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2003 |
|
RU2258295C2 |
Турбогенератор | 1981 |
|
SU1175003A1 |
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ И ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2006 |
|
RU2309512C1 |
СПОСОБ ВОЗДУШНОГО ОХЛАЖДЕНИЯ СЕКЦИОНИРОВАННОГО ВЕНТИЛЬНО-ИНДУКТОРНОГО ДВИГАТЕЛЯ И СЕКЦИОНИРОВАННЫЙ ВЕНТИЛЬНО-ИНДУКТОРНЫЙ ДВИГАТЕЛЬ С СИСТЕМОЙ ВОЗДУШНОГО ОХЛАЖДЕНИЯ | 2008 |
|
RU2358371C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1996 |
|
RU2095917C1 |
ИНДУКТОРНАЯ ГЕНЕРАТОРНАЯ УСТАНОВКА ПОСТОЯННОГО ТОКА | 2001 |
|
RU2235407C2 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА С ПЕРЕМЕННОЙ СИСТЕМОЙ ОХЛАЖДЕНИЯ | 2016 |
|
RU2692781C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА С ВНУТРЕННЕЙ ВЕНТИЛЯЦИЕЙ РОТОРА | 2012 |
|
RU2587543C2 |
Изобретение относится к области машиностроения и может быть использовано при создании вращающихся электрических машин с магнитными подшипниками, например турбогенераторов с воздушным охлаждением, имеющих замкнутый цикл вентиляции. Технический результат - удобство обслуживания и настройки вентиляции при более эффективном охлаждении подшипников и возбудителя, что обеспечивается благодаря тому, что в электрической машине с замкнутой системой вентиляции, содержащей корпус, на котором закреплен статор, внутри статора расположен ротор с обмоткой, вал которого установлен на опорных магнитных подшипниках, встроенные внутри корпуса охладители, имеющей в своем составе вентиляторы и установленный на валу ротора возбудитель, согласно изобретению, корпус машины охватывает статор и ротор, а магнитные подшипники и возбудитель снабжены каждый собственными корпусами, интегрированными в систему вентиляции электрической машины с помощью воздуховодов, которые соединяют корпус машины с корпусами подшипников, корпус машины и корпус возбудителя. 6 з.п. ф-лы, 5 ил.
DE 19731313, 24.09.1998 | |||
Турбогенератор | 1981 |
|
SU1175003A1 |
Электрическая машина с магнитными подшипниками | 1978 |
|
SU725155A1 |
Электрическая машина | 1989 |
|
SU1771041A1 |
Электрическая машина | 1989 |
|
SU1700691A1 |
Авторы
Даты
2006-07-20—Публикация
2005-02-01—Подача