ЗЕРКАЛО-МОНОХРОМАТОР ДЛЯ ЖЕСТКОГО УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ Российский патент 2006 года по МПК G02B5/08 G21K1/06 

Описание патента на изобретение RU2282222C2

Изобретение касается зеркала для жесткого ультрафиолетового излучения, которое обеспечивает монохроматизацию такого излучения.

Оптические системы для спектрального диапазона жесткого ультрафиолетового излучения (верхнего края спектра ультрафиолетового излучения), который охватывает длины волн приблизительно от 5 до 40 нм, формируются на основе многослойных зеркал. Многослойные зеркала состоят из чередующихся слоев двух материалов, оптические константы которых отличаются в максимально возможной степени. Для некоторых применений жесткого ультрафиолетового излучения, например в области материаловедения, рентгеновской астрономии или рентгеновской микроскопии, необходима монохроматизация этого излучения. Для этого необходимо уменьшать ширину спектральной кривой отражения многослойных зеркал, измеряемую по уровню половины максимума пика коэффициента отражения.

В литературе известны два подхода к уменьшению этой ширины.

Известно использование поперечного структурирования путем реактивного ионного травления для создания многослойного зеркала из комбинации материалов молибден/кремний, как описано в работе R.Benbalagh, J.M. Andre, R.Barchewitz, M.F.Ravet, A.Raynal, F.Delmotte, F.Nridou, Г.Джали, A.Bosseboeuf, R.Лаваль, Р.Troussel, Nucl. Inst. Meth. Phy. Res. A 458 (3) (2001), 650-655, что позволяет уменьшить ширину кривой коэффициента отражения многослойного зеркала в 3 раза по сравнению с шириной кривой коэффициента отражения многослойного зеркала со структурой молибден/кремний, оптимизированного для достижения максимального коэффициента отражения.

Однако недостаток такой обработки состоит в том, что литографическое структурирование многослойных структур является очень дорогостоящим и, кроме того, у такого многослойного зеркала при угле падения около 45° наблюдается значительное уменьшение коэффициента отражения, до R=2%, no сравнению с коэффициентом отражения R=40%, который имеет при том же угле падения соответствующее многослойное зеркало, не подвергнутое литографическому структурированию.

Известно, что ширина кривой отражения многослойных зеркал из молибдена/кремния может быть уменьшена путем уменьшения толщины слоев молибдена, как изложено в работе Y.C. Lim, Т. Westerwalbesloh, A.Aschentrup, О. Wehmeyer, Г. Haindl, U. Kleineberg, U. Heinzmann, Appl. Phys. A72 (2001), 121-124. Однако практика показывает, что уменьшение толщины слоя молибдена возможно только в ограниченной степени, поскольку эта толщина составляет всего около 3 нм даже в стандартном многослойном зеркале.

Целью настоящего изобретения является создание многослойного зеркала, которое в диапазоне жесткого ультрафиолетового излучения имеет малую ширину кривой отражения по уровню половины максимума при высоком коэффициенте отражения в широком диапазоне углов падения. Также желательно устранить ограничения и недостатки, присущие известному уровню техники.

Эта цель в соответствии с настоящим изобретением достигается с помощью признаков, изложенных в независимом пункте формулы изобретения.

Вследствие того, что многослойная структура зеркала образована периодическим повторением двух отдельных слоев А и В из различных материалов, образующих один период с толщиной d и имеющих соответствующие толщины (dA и dв), причем

0,97 (dA+dB)≤d≤(dA+dB) 1,03 и

(nAdA+nBdB)·cos(θ)=m·λ/2,

где nА и nB - действительные части комплексных показателей преломления материалов отдельных слоев А и В; m - целое число, представляющее порядок брэгговского отражения, больший или равный 2, λ - длина волны падающего излучения, а θ - угол падения падающего излучения, в многослойном зеркале, выполненном согласно настоящему изобретению, может быть достигнуто существенное уменьшение ширины кривой отражения по уровню половины максимума при использовании брэгговского отражения второго или более высокого порядка. Благодаря уменьшению ширины кривой отражения по уровню половины максимума путем использования брэгговского отражения более высокого порядка, многослойное зеркало действует как монохроматор, в результате чего значительно упрощается структура оптических систем для жесткого ультрафиолетового излучения, например в синхротронных источниках излучения и спектрометрах ультрафиолетового диапазона для плазменных источников, где для монохроматизации жесткого ультрафиолетового излучения традиционно используются различные типы решеток, поскольку многослойное зеркало может одновременно использоваться и как монохроматор, и как элемент направления луча. Более нет необходимости снабжать оптический тракт дополнительной дифракционной решеткой.

Требуемый эффект также достигается для произвольного случая наклонного падения волны путем учета угла θ падения.

Как видно из признаков независимого пункта формулы изобретения, увеличение толщины периода структуры в целое число раз необходимо для достижения отражения более высокого брэгговского порядка, использование которого обычно ведет к уменьшению коэффициента отражения многослойного зеркала.

Согласно настоящему изобретению, это уменьшение коэффициента отражения, возникающее при увеличении толщины периода, ограничивается тем, что при вышеупомянутом увеличении толщины периода увеличивается только толщина слоя В (слоя разделителя), тогда как толщина слоя А (слоя поглотителя) остается неизменной по сравнению с соответствующим многослойным зеркалом, в котором используется брэгговское отражение первого порядка; то есть относительная толщина слоя A Г=dA/d слоя всегда меньше, чем 0,8/m, где m - целое число, соответствующее порядку брэгговского отражения, который равен или превышает 2.

В предпочтительном варианте выполнения настоящего изобретения, согласно п.2 формулы изобретения, можно достигнуть даже лучших результатов, если обеспечить, чтобы относительная толщина Г слоя А всегда была меньше, чем 0,5/m.

Один из примеров выполнения настоящего изобретения показан на фиг.1, и изобретение подробно описано со ссылкой на этот чертеж.

На фиг.1 схематично показано поперечное сечение многослойного зеркала-монохроматора;

на сриг.2 показан график экспериментально измеренных значений коэффициента отражения.

На фиг.1 в качестве примера схематично показана многослойная структура зеркала-монохроматора для жесткого ультрафиолетового излучения. Отдельные слои А и В, которые в каждом случае вместе образуют один период, расположены с периодической последовательностью под слоем D покрытия, который выполнен, например, из кремния, при этом показанный темным слой А является слоем поглотителя и имеет толщину dA, а показанный светлым слой В является слоем разделителя и имеет толщину dB. Толщина d периода складывается из толщин dA и dB слоев А и В.

На чертеже схематично показаны четыре таких периода, образованных слоями А и В, при этом самый нижний слой граничит с подложкой S. Толщины dA и dB слоев в каждом случае неизменны во всех периодах, так что толщина d конкретного периода везде имеет отклонение не более ±1%; такое возможное при промышленном изготовлении отклонение гарантирует, тем не менее, способность настоящего изобретения функционировать.

На практике слой А поглотителя может быть выполнен, например, из молибдена, а слой В разделителя - например, из кремния. В данной структуре подложка S представляет собой кремниевую пластину. Количество периодов, состоящих из слоев А и В, составляет, например, 40, так что глубина проникновения излучения используется в максимальной степени.

В многослойном зеркале-монохроматоре, схематично показанном на фиг.1, используется второй или более высокий порядок брэгговского отражения. Здесь толщина d любого из периодов в идеальном случае равна d=dA+dB, при этом nAdA+nBdB=m·λ/2, где комплексные показатели преломления материалов отдельных слоев А и В определяются выражениями и так что оптические константы nА и nВ получаются непосредственно из действительных частей комплексных показателей преломления; m - целое число, равное порядку брэгговского отражения, который больше или равен 2; и λ - длина волны падающего излучения, которое должно быть отражено зеркалом-монохроматором с минимально возможным ослаблением.

Чтобы в соответствии с вышеприведенным выражением для достижения брэгговского отражения второго или более высокого порядка увеличить толщину периода в целое число раз по сравнению с обычным многослойным зеркалом, работающим на первом порядке брэгговского отражения, и чтобы соответственно уменьшить ширину кривой коэффициента отражения по уровню половины максимума, но при этом по возможности сохранить значение коэффициента отражения зеркала в точке максимума, увеличивается только толщина слоя В разделителя, в то время как толщина слоя А поглотителя не изменяется по сравнению с вышеупомянутым многослойным зеркалом, работающим на первом порядке брэгговского отражения. Таким образом, относительная толщина Г=dA/d слоя А в каждом периоде выбрана так, чтобы выполнялось условие Г<0,8/m. Еще лучшего результата можно достичь выбором Г<0,5/m.

Поскольку материал разделителя для многослойного зеркала выбирают так, чтобы он вносил лишь очень малое поглощение, коэффициент отражения уменьшается в этом случае далеко не столь значительно, как в том случае, когда толщины обоих слоев увеличивают пропорционально для достижения отражения более высокого порядка отражения по сравнению с многослойным зеркалом первого порядка.

При моделировании, которое проводилось для такого многослойного зеркала-монохроматора со слоями поглотителя из молибдена и разделителя из кремния, образующими 50 периодов, для выбранной длины волны 13,5 нм, причем шероховатость и наличие слоев взаимной диффузии на границах молибден/кремний не учитывались, были рассчитаны максимальный коэффициент отражения, теоретически достижимый с использованием вышеописанной структуры, и полная ширина пика коэффициента отражения по уровню половины его максимума (FWHM) для различных порядков m брэгговского отражения и различных толщин слоев В разделителя; эти результаты сведены в таблицу. Например, даже для второго брэгговского порядка можно достичь уменьшения ширины пика коэффициента отражения в 2 раза. Даже для десятого брэгговского порядка все еще можно достичь коэффициента отражения более 25%.

Таблица 1mdsi (нм)dMo (нм)d (нм)ГRmax (% при 13,5 нм)FWHM (нм)13,923,006,920,4375,60,631210,73,0013,70,2265,70,327317,53,0020,50,1757,40,220531,03,0034,00,09644,40,1371064,83,0067,80,04625,20,080

При практической реализации такого многослойного зеркала-монохроматора с отражением второго или третьего брэгговского порядка и структурой, соответствующей значениям, приведенным в таблице для m=2 и m=3, были измерены показанные на фиг.2 значения коэффициента отражения в зависимости от длины волны жесткого ультрафиолетового излучения. Ясно видно, что имеется узкий пик коэффициента отражения около выбранной длины волны λ, равной 13,5 нм, и, следовательно, достигается требуемая монохроматизация около требуемой длины волны λ.

Здесь полная ширина пика коэффициента отражения по уровню половины максимума составляет 0,277 нм для брэгговского порядка m=2 при максимальном коэффициенте отражения R=53,5% и 0,188 нм для m=3 при максимальном коэффициенте отражения R=45,3%. По сравнению с известными многослойными зеркалами, работающими на первом порядке брэгговского отражения, ширина пика коэффициента отражения по уровню половины максимума уменьшена и составляет менее половины или менее одной трети.

Похожие патенты RU2282222C2

название год авторы номер документа
СПОСОБ РЕНТГЕНОСПЕКТРАЛЬНОГО ОПРЕДЕЛЕНИЯ РАЗМЕРОВ НАНОЧАСТИЦ В ОБРАЗЦЕ 2013
  • Бойко Михаил Евгеньевич
  • Шарков Михаил Дмитриевич
  • Бойко Андрей Михайлович
  • Бобыль Александр Васильевич
  • Теруков Евгений Иванович
RU2548601C1
НЕЙТРОННЫЙ ПОЛЯРИЗАЦИОННЫЙ РЕФЛЕКТОМЕТР 2015
  • Сыромятников Владислав Генрихович
RU2590922C1
ТЕРМОСТАБИЛЬНОЕ МНОГОСЛОЙНОЕ ЗЕРКАЛО ДЛЯ КРАЙНЕГО УЛЬТРАФИОЛЕТОВОГО СПЕКТРАЛЬНОГО ДИАПАЗОНА 2005
  • Бенуа Николя
  • Файгль Торстен
  • Кайзер Норберт
  • Юлин Сергий
RU2410732C2
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПОТОКОМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Баранов А.М.
  • Кондрашов П.Е.
  • Смирнов И.С.
RU2109358C1
РЕНТГЕНОВСКИЙ РЕФЛЕКТОМЕТР 1999
  • Турьянский А.Г.
  • Пиршин И.В.
RU2166184C2
ЛИТОГРАФИЧЕСКОЕ УСТРОЙСТВО 2000
  • Бабонно Даниель
  • Марморе Реми
  • Бонне Лоранс
RU2249840C2
РЕНТГЕНОВСКИЙ РЕФЛЕКТОМЕТР 1998
  • Турьянский А.Г.
  • Великов Л.В.
  • Виноградов А.В.
  • Пиршин И.В.
RU2129698C1
СПОСОБ ДИАГНОСТИКИ ПОЛУПРОВОДНИКОВЫХ ЭПИТАКСИАЛЬНЫХ ГЕТЕРОСТРУКТУР 2012
  • Енишерлова-Вельяшева Кира Львовна
  • Лютцау Александр Всеволодович
  • Русак Татьяна Федоровна
RU2498277C1
ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР 2008
  • Козловский Владимир Иванович
RU2408119C2
ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР С ШИРОКИМ ПЕРИОДИЧЕСКИ СЕКЦИОНИРОВАННЫМ ПОЛОСКОВЫМ КОНТАКТОМ 2001
  • Сычугов В.А.
RU2197772C1

Иллюстрации к изобретению RU 2 282 222 C2

Реферат патента 2006 года ЗЕРКАЛО-МОНОХРОМАТОР ДЛЯ ЖЕСТКОГО УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ

Зеркало-монохроматор для жесткого ультрафиолетового излучения содержит многослойную структуру, расположенную на подложке и включающую периодическую последовательность двух отдельных слоев (А, В) из различных материалов, образующих слой-разделитель и слой-поглотитель, с периодом, имеющим толщину d, причем используется брэгговское отражение второго или более высокого порядка. Указанная толщина d имеет отклонение от номинального значения не более 3%. При этом выполняется соотношение: (nAdA+nBdB)cos(θ)=mλ/2, где dA и dB - толщины соответствующих слоев; пA и пB - действительные части комплексных показателей преломления материалов слоев А и В; m - целое число, равное порядку брэгговского отражения, который больше или равен 2, λ - длина волны падающего излучения и θ - угол падения падающего излучения. Для относительной толщины слоя Г=dA/d выполняется соотношение Г<0,8/m. Обеспечивается создание многослойного зеркала, которое в диапазоне жесткого ультрафиолетового излучения имеет малую ширину кривой отражения по уровню половины максимума при высоком коэффициенте отражения в широком диапазоне углов падения. 5 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 282 222 C2

1. Зеркало-монохроматор для жесткого ультрафиолетового излучения, включающее многослойную структуру, нанесенную на подложку в виде последовательности отдельных слоев, отличающееся тем, что многослойная структура образована периодическим повторением двух отдельных слоев А и В из различных материалов, образующих один период многослойной структуры, имеющий толщину d, при толщинах соответствующих слоев dA и dB, причем:

0,97(dA+dB)≤d≤(dA+dB)1,03 и

(nAdA+nBdB)cos(θ)=mλ/2,

где nA и nB - действительные части комплексных показателей преломления материалов отдельных слоев А и В; m - целое число, равное порядку брэгговского отражения, который больше или равен 2; λ - длина волны падающего излучения и θ - угол падения падающего излучения; а для относительной толщины слоя Г=dA/d выполняется соотношение

Г<0,8/m.

2. Зеркало-монохроматор по п.1, отличающееся тем, что для относительной толщины слоя Г=dA/d выполняется соотношение Г<0,5/m.3. Зеркало-монохроматор по п.1 или 2, отличающееся тем, что материалами отдельных слоев А и В являются молибден и кремний.4. Зеркало-монохроматор по п.1 или 2, отличающееся тем, что оно имеет так много периодов, что глубина проникновения падающего излучения используется в максимальной степени для достижения оптимального коэффициента отражения.5. Зеркало-монохроматор по п.1 или 2, отличающееся тем, что на поверхности слоя, наиболее удаленного от подложки, имеется слой покрытия.6. Зеркало-монохроматор по п.1 или 2, отличающееся тем, что ширина спектральной кривой коэффициента отражения зеркала, измеренная по уровню половины максимума, при использовании брэгговского отражения второго порядка (m=2) уменьшается приблизительно в два раза по сравнению с шириной спектральной кривой коэффициента отражения зеркала при использовании брэгговского отражения первого порядка (m=1), измеренной по уровню половины максимума.

Документы, цитированные в отчете о поиске Патент 2006 года RU2282222C2

Лопастной прессиометр для определения деформационных свойств грунтов 1982
  • Амарян Лено Самвелович
SU1065532A1
Гидравлическая система транспортного средства с гидрообъемной трансмиссией 1983
  • Богданов Анатолий Николаевич
  • Грязнов Валентин Николаевич
  • Бажанов Владимир Алексеевич
  • Ксенофонтов Николай Иванович
  • Бобиков Аркадий Аркадьевич
  • Калмыков Вячеслав Николаевич
  • Пашкевич Виктор Васильевич
  • Передельский Владимир Васильевич
SU1150139A1
Способ синхронизации по посылкам 1981
  • Фрумкин Илья Григорьевич
  • Червинский Евгений Наумович
SU1091360A1
JP 2000028809 А, 28.01.2000
ДИФРАКЦИОННАЯ РЕШЕТКА ДЛЯ УЛЬТРАФИОЛЕТОВОГО И РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 1996
  • Виноградов Александр Владимирович[Ru]
  • Левашов Владимир Евгеньевич[Ru]
  • Зубарев Евгений Николаевич[Ua]
  • Кондратенко Валерий Владимирович[Ua]
  • Федоренко Анатолий Иванович[Ua]
  • Юлин Сергей Анатольевич[Ua]
RU2104567C1

RU 2 282 222 C2

Авторы

Файгл Торстен

Кайзер Норберт

Кульманн Томас

Юлин Сергей

Даты

2006-08-20Публикация

2003-02-21Подача