СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ ПУТЕМ ХОЛОДНОГО ОПРЕСНЕНИЯ ВЫСОКОМИНЕРАЛИЗОВАННЫХ ВОДНЫХ РАСТВОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2006 года по МПК C02F9/12 C02F1/48 

Описание патента на изобретение RU2284966C2

Изобретение относится к технике обработки воды, а именно к технологии получения питьевой воды из горько-соленых высокоминерализованных водных растворов, в частности из морской воды. Предложенная технология холодного опреснения предназначена для получения питьевой воды, в том числе, со свойствами лечебной или талой воды. Изобретение позволяет получить питьевую воду с повышенной концентрацией растворенного в ней кислорода с нейтральным значением водородного числа (рН в диапазоне 6,9-7,2) и с ионным числом М<0,4.

Известны технологии опреснения морской воды, основанные на принципах обратного осмоса или электродиализа, позволяющие получить воду, состав которой отвечает технической. (Г.Н.Николадзе. Системы водоподготовки, М., Высшая школа, 1997 г., с.137).

К недостатками этих технологий относится возможность получения только технической воды, что требует ее последующей очистки и обеззараживания, необходимость применения высоконапорных насосов большой мощности, что приводит к высоким энергозатратам, обязательное наличие систем удаления рассола и последующей его переработки на специальном оборудовании или возврата рассола в процесс, что ведет к снижению производительности установок обессоливания.

Наиболее близким к заявленному техническому решению является принятая за прототип электроразрядная технология очистки и обеззараживания воды, где в качестве инструмента используется квазиобъемный разряд в водовоздушной среде (Н.А.Яворский и др. Очистка воды с применением электроразрядной обработки. - Водоснабжение и санитарная техника, 2000 г., №5, с.12-14).

Способ содержит операции озонирования и гидромеханической кавитации высокоминерализованной исходной воды до получения однородного двухфазного состояния с выравниванием гидродинамических параметров, воздействия электромагнитных полей и облучения в ультрафиолетовом свете, что обеспечивает ее обеззараживание, операции пеноудаления, фильтрации примесей, гравитационной сепарации с раздельным отбором очищенной воды и рассола.

Недостатком известного способа является необходимость высоких энергетических затрат, связанных с потребностью большого расхода аэродинамических потоков на обрабатываемую воду. Процесс протекает при повышенных температуре и давлении.

Известный способ реализован в водоочистной установке, основными узлами которой является колонна в комплекте с озонатором и источником питания, бак реактор, перекачивающие насосы, фильтры, насос для промывки фильтров, блок автоматики, приборное оформление. В качестве аэратора используется противоточная вентиляторная градирня. Исходная вода распыляется эжектором и по загрузке аэратора стекает вниз. Воздух вентилятором подается навстречу потоку воды снизу вверх. Озонатор размещен непосредственно в водовоздушном потоке и выполнен в виде газоразрядного блока, обеспечивающего импульсный барьерный разряд, сопровождающийся УФ-излучением (описание установки "Импульс". Н.А.Яворский и др. Очистка воды с применением электроразрядной обработки. - Водоснабжение и санитарная техника, 2000 г., №5, с.12-14).

Известная установка при больших массогабаритных характеристиках (высота аэратора составляет 3,5-4 м) не обеспечивает достаточную производительность, которая на порядок ниже агрегатов обратного осмоса. Кроме того, для получения однородного потока в типовой вентиляторной градирне с тремя и более зонами аэропотока процесс проводится при повышенных температуре и давлении.

Задача настоящего изобретения состоит в создании технологии получения питьевой воды путем холодного опреснения высокоминерализованной, например морской, воды с любой концентрацией (C) суммарных солей (0,05<C<150 г/л).

Техническим результатом является минимизация затрат электроэнергии, удешевление процесса, возможность придания питьевой воде лечебных свойств и создание устройства реализующего способ, обладающего высокой производительностью при снижении массогабаритных характеристик.

Технический результат достигается тем, что в способе получения питьевой воды путем холодного опреснения высокоминерализованных водных растворов, включающем операции озонирования исходной воды (ИВ) до получения однородного двухфазного состояния с выравниванием гидродинамических параметров, воздействие импульсными электромагнитными полями и облучение в ультрафиолетовом спектре, последующее осаждение солей, гравитационную сепарацию с раздельным отбором очищенной воды и рассола, исходная вода подвергается воздействию импульсными электромагнитными полями многократно с наносекундной продолжительностью. Первичное воздействие осуществляется импульсными электромагнитными полями с независимыми регулируемыми амплитудами импульсов напряжения и тока с наносекундными фронтами в зависимости от концентрации суммарных солей. Озонирование проводится дробным многократным порционным воздействием озонокислородной и/или озоновоздушной смесью одновременными с гидромеханической кавитацией, электрогидравлическим ударом и отбором выделяемых солей, расщеплением воды на резонансной частоте межмолекулярных связей с последующим центрифугированием в ионизирующем импульсно-частотном электромагнитном поле напряженностью не менее 20,5 кВ/см, с повторным образованием аэрозолей и их сепарации в электростатических полях постоянной и переменной напряженности поля, с дальнейшим разделением и отбором очищенной воды с заданными свойствами и осаждением солей, причем процесс происходит при нормальной температуре. При этом электромагнитное воздействие осуществляется наложением постоянного и переменного токов с напряженностью полей 2,5-3 кВ/см с регулировкой результирующего СВЧ-поля. Кроме того, резонансная частота молекулярной связи для исходной воды с содержанием солей 0,3-5 г/л составляет 3,5-8,5 кГц, при концентрации от 5 до 35 г/л - от 10 до 38 кГц. При концентрации суммарных солей в исходной воде от 0,3 до 5 г/л уровень напряженности результирующего поля составляет 12-16 кВ/см, а при концентрации от 5 до 35 г/л напряженность поля 20,5-21,5 кВ/см. При этом при повторном образовании аэрозолей амплитуда импульсов тока не менее 1,2 кА, при концентрации солей от 0,3 до 5 г/л и 15 кА - при концентрации солей от 5 до 35 г/л. При повторном образовании аэрозолей в потоке на гидромеханическую кавитацию накладывается электрогидравлический удар с синхронным наложением вращающегося магнитного поля с амплитудами магнитной индукции не ниже 1,4 Тл при концентрации солей 0,3-5 г/л до 3,7 Тл при концентрации солей 5-35 г/л. Кроме того, при концентрации солей до 150 г/л исходная вода перед обработкой разбавляется дистиллированной водой до концентрации не более 50 г/л.

Технический результат при создании устройства для реализации предложенного способа достигается тем, что, установка для холодного опреснения высокоминерализованных водных растворов, содержащая устройство озонирования, источники питания, источники выработки озоносодержащего газа, перекачивающие насосы и фильтры, выполнена в виде четырех основных блоков, установленных последовательно по потоку обрабатываемой воды: блока возбуждения исходной воды в электромагнитных полях с наложением СВЧ-полей, содержащего возбудитель с системой электродов и струйный аппарат, блока озонирования и получения технической воды, состоящего из гидромеханического кавитатора с электродинамическим флотатором, блока получения питьевой воды, состоящего из последовательно установленных многорядового и молекулярно-магнитных фильтров и гравитационного сепаратора, блока электрогидродинамического распылителя-сепаратора, состоящего из центрифуги, помещенной в электромагнитное поле с напряжённостью 20,5 - 21,5 кВ/см и по меньшей мере из двух электростатических сепараторов. Кроме того, установка содержит дополнительный блок получения медицинской и питьевой воды повышенного качества, выполненный в виде типового ионизатора жидкости и блок получения дистиллята. Новизна предложенного способа состоит в том, что исходная вода многократно озонируется малыми дозами озонокислородной смеси, что обеспечивается воздействием импульсными электромагнитными полями с наносекундной продолжительностью.Таким образом, активация исходной воды в импульсных электромагнитных полях с независимыми регулируемыми амплитудами импульсов напряжения и тока с наносекундными фронтами обеспечивает резкое ослабление молекулярных связей, что позволяет осуществить более тонкую диспергацию. Диполи под действием электромагнитного поля приобретают определенную ориентацию, что позволяет разделять раствор (классифицировать) на отдельные потоки однотипных составляющих с одноименным зарядом. Уменьшение сил межмолекулярного притяжения делает возможной диспергацию жидкости на молекулярном уровне. Обеспечивается активация жидкости, тонкая диспергация и длительная сохранность в двухфазном состоянии. Выбранные параметры воздействия на воду подтверждены экспериментально и хорошо согласуются с теоретическими исследованиями (Летников Н.И. Р-Т активация воды. - М.: Наука, 1980, с.67-69, 91-94).

На чертеже изображена принципиальная технологическая схема водоочистной установки.

Установка выполнена в виде пяти основных блоков, соединенных в технологическую линию последовательно по потоку обрабатываемой воды: блока I, предназначенного для возбуждения исходной воды (ИВ) в электромагнитных полях с наложением СВЧ-поля, блока II - озонирования ИВ, блока III фильтрации и получения технической воды, блока IV - системы тонкой очистки, классификации и сепарации, получения питьевой воды и дополнительных блоков V - получения медицинской и питьевой воды повышенного качества (oxi-воды) и VI - дистиллятора, который включается в процесс только в случае, когда суммарная концентрация солей в исходной воде превышает 50 г/л.

Блок I состоит из возбудителя 1, выполненного в виде емкости, например, в виде трубы из диэлектрика или металлопластика с встроенными электродами, две пары которых образуют взаимно перпендикулярные постоянное и переменное электромагнитные поля. Емкость размещена внутри соленоида, подключенного к высоковольтному генератору импульсного тока 2, например, ГИТ-25-10 - генератор емкостных токов - емкостной накопитель с емкостью в ударе в 1 мкФ с энергией 1 Дж. В этом блоке размещен второй основной элемент - озонатор, выполненный в виде типового генератора озона, подключенного к струйному аппарату с эжектором 3, соединенным с импульсным источником питания, например, кабельным генератором импульсных напряжений ГИАН. Здесь же установлен и дополнительный эжектор 4 подачи дистиллированной воды.

Блок II состоит из маломощного насоса 5, подающего воду в гидромеханический кавитатор 6, и флотатора 7.

Блок III содержит типовой многорядовый фильтр и/или ряд фильтров 8 и 9, позволяющих отделить из потока частицы и органику. На выходе из этого блока размещены накопительные емкости 10 для сбора осадка и для очищенной воды 11, обладающей свойствами технической.

Блок IV состоит из центрифуги 12, классификатора 13 с электростатическим полем переменной напряженности и сепаратора 14 с электростатическим полем напряженностью не ниже 2 кВ/см и накопительной емкости 15 для воды с характеристикой питьевой согласно ГОСТ 2874-82.

Блок V представляет собой ионизатор для разделения питьевой воды по водородному числу на медицинскую и лечебную, например, медицинский ионизатор переработки водопроводной воды в oxi-воду ИВТИ-12.

Блок VI - дистиллятор.

Получение питьевой воды способом холодного опреснения реализуется в созданной установке следующим образом.

Исходная вода в возбудителе 1 подвергается воздействию электромагнитных полей, которые являются альтернативой воздействию мощным ультразвуком, но с существенно большим КПД из-за возможного изменения частоты и амплитуды колебаний акустических волн путем подбора соотношений электростатического поля с регулируемыми электромагнитным и СВЧ-полями при суммарных энергозатратах на порядок меньших, чем при применении непосредственно ультразвука (см. Харт Э. Электрофизические и гидродинамические свойства мощных электрических разрядов в воде. - М.: Атомиздат, 1978 г., с.112).

В результате такой комбинации полей в рабочем объеме возбудителя 1 создаются поперечные и продольные акустические волны, амплитуды и частоты которых регулируются с помощью высоковольтных источников 2, что позволяет осуществлять колебательные процессы кластеров исходной воды и частично их разрушать.

Экспериментально было установлено, что оптимальные параметры обработки соответствуют значениям полей:

- для электростатического поля постоянного тока рабочая напряженность ≈2,5 кВ/см, такая же напряженность и для электромагнитного поля переменного тока с диапазоном частот 400-1500 Гц, которые обеспечиваются типовыми источниками.

- напряженность СВЧ-поля определялась уровнем напряжения на выходе генератора импульсных токов и в зависимости от концентрации солей в ИВ варьировалась от 12-16 кВ до 20,5-21,5 кВ при амплитудах импульсов тока в диапазоне 1,2-15 кА.

В возбудителе 1 происходит перевод ИВ в двухфазное состояние при высоких скоростях потока (10-20 м/сек), который поступает в струйный аппарат 3, где происходит озонолиз солей и увеличение концентрации растворенного в ИВ кислорода путем подачи озонокислородной смеси из озонатора 4. На выходе из блока I рабочая среда представляет собой обеззараженную однородную парогазовую смесь, из которой частично удалены соли железа и кальция, а также ряд сульфидов и нитритов. Их удаление осуществляется стандартными методами, например, путем пропускания через многорядовый фильтр гранульного типа или в противотоке через пористые мембраны диэлектрического или металлического типа.

Для выравнивания гидродинамических давлений и скоростей смеси типовым водяным насосом 5 малой мощности (нами использовались насосы RT-8 и R-60) рабочая среда подается в гидромеханический кавитатор 6, где подвергается мощному суммарному гидравлическому удару с наложением электрического наносекундного разряда в воде и дополнительному озонированию для поддержания концентрации растворенного кислорода не ниже 20 мг/л. Для этого к стандартному гидромеханическому кавитатору (например, кавитатор Жуковского или Л. Седого) подведено высокое импульсное напряжение величиной, равной пробивному критическому сечению кавитатора. При этом входная скорость потока рабочей среды поддерживается около 10 м/с для воды с содержанием от 0,3 до 5 г/л и около 20 м/с при содержании солей от 5 до 35 г/л. При электрическом пробое в критическом сечении кавитатора одновременно с появлением ударной волны осуществляется повторное озонирование за счет перепада давления.

В зоне кавитации образуется однородная парогазовая смесь, которая подается на вход электрогидродинамического флотатора 7. Флотатор представляет собой циллиндрический корпус, в котором размещены заполненные водой разрядники, соединенные с импульсными источниками тока. В простейшем случае был использован лабиринт-встряхиватель, представляющий собой стандартный элемент импульсной техники для любой жидкости (например, см. Вовк И.Т. Новое в теории и практике электрогидравлического эффекта. - Киев: Наукова думка, 1982 г., с.184).

При срабатывании разрядников во флотаторе возникают продольно-поперечные волны, передающие акустические напряжения на транспортируемый поток. Эти волны препятствуют осаждению солей и регулируют экспозицию транспорта потока на выходе из флотатора. На выходе флотатора рабочая смесь из-за суммарных процессов озонолиза, гидроудара акустических волн и излучений содержит разрушенные кластеры водного раствора, гидроокислы, скоагулированные в частицах, соли металлов Fe, Mn, Mg и Са, органику. Состав зависит от состава суммарных солей ИВ.

Полученный таким образом водный раствор подается в блок фильтрации III - на типовой многорядовый фильтр или ряд фильтров 8, например стандартный ряд фильтров из пористой металлокерамики, или стандартные мембранные фильтры 9. Наличие в потоке избытка озона и растворенного в ней активного кислорода обеспечивает регенерацию абсорбционных свойств металлокерамики и мембран, что позволяет отказаться от использования химреактивов или периодической замены фильтров.

Получаемый при этом осадок, состоящий из органических соединений и неорганики, извлекается раздельно либо совместно в емкость 10 и может использоваться для дальнейшей переработки: получения морской соли заданного состава, извлечения органики для выработки биогумуса и т.п.

На выходе блока III в сборнике 11 получается вода, отвечающая требованиям технической воды для промышленного использования.

Питьевая вода получается обработкой технической в блоке IV тонкой очистки, куда она подается насосом в центрифугу 12, а затем в систему классификатора 13 с электростатическим полем переменной напряженности и сепаратора 14 напряженностью 2кВ/см, образующих не менее двух электростатических полей. Особенность обработки в этом блоке состоит в том, что центрифуга помещена в электромагнитное поле с напряженностью более 20,5 кВ/см. Это достигается тем, что ультрацентрифуга, например дисковая со скоростью 3000 об/мин и диаметре в 120 мм, помещена в поле высоковольтного электрода, на который подается импульс тока в 1,2 кА. Внутри потока возникает униполярный коронный разряд в форме факела. При этом в потоке происходит разделение по массе (классификация), зарядка капель по диэлектрическим свойствам и электропроводности, в результате чего образуются три или больше потоков: чистая вода, техническая вода, не успевшая полностью преобразоваться, и осадок. Это разделение происходит в электростатических классификаторе 13 и сепараторе 14, подключенных к тому же высоковольтному источнику, что и центрифуга 12. Для повышения растворимости кислорода и интенсификации озонолиза в центрифугу дополнительно подается озонокислородная смесь от озонатора ГО.

На выходе блока IV получаем питьевую воду в соответствии с Сан-Пин 2002, которая накапливается в емкости 15 и далее поступает в распределительную сеть питьевой воды.

Осадок из классификатора 13 направляется в накопительную емкость 10.

При желании получит воду с лечебными свойствами питьевая вода из блока IV подается в блок V, например в медицинский ионизатор, в котором достигается требуемая концентрация растворенного кислорода СО2>20 мг/л и поддерживается нейтральный водородный показатель рН (6,9≤рН≤7,1).

При необходимости опреснения исходной воды с содержанием солей до 150 мг/л в блок I до стадии озонирования подается дистиллированная вода из блока VI, например, химотронного плазмотрона (патент РФ 2171863), в количестве всего не более 10%, снижая суммарную концентрацию солей до 30-50 г/л. Все процессы происходят при нормальной температуре (20°С) и без использования химреагентов.

Режимные характеристики предложенного способа получены экспериментальным путем на построенной полномасштабной опытной установке производительностью 6 л/мин. Размеры установки составляют 2000×1400×1120 мм3, что выгодно отличает ее от прототипа, а расход электроэнергии составляет всего 8 Вт·ч/м3 (установленная мощность 1,2 кВт), что выгодно отличает ее от прототипа (50 Вт·ч/м3).

Объективное достижение технического результата подтверждается сравнительными исследованиями параметров питьевой воды, полученной известными и предложенным способами, что подтверждается следующими данными.

В табл.1, 2 приведены данные сопоставительного анализа ионного состава и параметров питьевой воды, полученной предложенным способом, и питьевой воды, полученной опреснением морской воды методом обратного осмоса (по данным Бейгельбруд Г.М., Габленко В.Г. Технология получения питьевой воды из морской. Дубна, Перспектива, 2001, с.67) и предложенным способом на опытной установке.

Таблица 1Ионный состав питьевой воды [мг×л-1]№ п/пЭлементы состава водыИсходная морская водаМетод обратный осмос [5]По предложенному способуодноступенчатыйдвухступенчатый1Са2+126,22,12,752Mg2+275,13,23,243Na+151685427,54Cl-35017091,442,85SO42-16912482,3656НСО3-2421,58,76,97Жесткость мг-экв×л-10,70,460,380,48Суммарная концентрация карбонатов1,760,80,10,089Общая минерализация, M178762314512010Сухой остаток56850013212711NH4+1,20,70,50,4512РН8,27,16,656,9Таблица 2Характерные параметры исследуемых вод№ п/пПоказательЕд. изм.ИВ, исходная водаОбратный осмос [5]По предложенному способу1Хлорность%22,69,54,72Суммарное содержание соли, Сг/л37,13,91,273Концентрация растворенного кислорода, СО2мг/л4,395,17,9-11,04Водородное число, рНед рН8,27,37.15Фосфатымкг/л2222146Нитритымкг/л3427137,4-17,97Нитратымкг/л7264388Аммиак, NH3мкг/л850175829Диоксид углерода, CO2%0,450,40,210Йод(I)мг/л1,11,10,0611Серебромг/л0,0050,0050,00312Щелочностьмг-экв/л3,12,4213Соотношение щелочности к хлорностиALK/Св×10332511816014Углекислый газг-моль/л ×10-622,5713,510,215Парциальное давление, СО2pCO2×10-5 мПа7,65,73.216ХПКмг/л19,569.82,117БРКмг/л64,20,618Бикарбонатыг-ион/л ×10-32,21,41,319Карбонатыг-ион/л ×10-30,190,10,0620Атразинмкг/л0,270,20,0121Симазинмкг(л)0,20,1-22Комплексный показатель токсичности по SUM тригалеметановед.0,50,5следы23Термотолерантные коли-бактерииКОЕ/100 млдо 120100отсутствие в 30024Глюкозоположительные коли-бактерииКОЕ/100 млдо 4025 в 300отсутствуют25Споры сультифитред клостридийКОЕ/100 млдо.10065отсутствие в 2026КолифагиБОЕ/100 млдо 1000 кл500 клотсутствуют27Осцисты криптоспоркол-во/50 лдо 10до 10отсутствуют28Цисты лямблийкол-во/50 лдо 20до 15отсутствуют29Яйца гельминтовкол-во/50 лдо 10естьотсутствуют30Общее количество бактерийКОЕ/100 млдо 100до 50менее 5-10 в 1000 мл

Эффективность предложенного способа холодного опреснения морской воды подтверждается сопоставлением состава питьевой воды г. Москвы, отвечающей ГОСТ-2874-84 и полученной по предложенной технологии на опытной установке (в качестве морской использована вода с суммарным содержанием солей 87 г/л).

Таблица 3Анализ питьевой воды по нормативным данным№ п/пНаименование элементаРазмерность, ед. изм.Питьевая вода, г. МоскваСостав по предложенному способу1Аммоний - ионмг/дм30,230,052Нитратымг/дм33,21,43Нитритымг/дм30,061,74Водородное число рНед.рН7,47,15Перманганатная окисляемостьмго/дм34,57,9-11,06Железо общеемг/дм30,050,37Железо (III)мг/дм3<0,10,078Жесткость общаям-моль/дм36,73,79Кадмиймг/дм3<0,01след10Кальциймг/дм3482811Магниймг/дм312,45,412Марганецмг/дм30,0450,0513Медьмг/дм30,009114Нефтепродуктымг/дм30,04нет15Никельмг/дм30,070,0216Свинецмг/дм3<0,0010,0117Сульфатымг/дм312,61518Сухой остатокмг/дм326614019Фенолымг/дм31,680,5820Фосфатымг/дм30,060,03521Фторидымг/дм30,60,422Хлоридымг/дм317,60,1523Хром общиймг/дм3<0,010,0524Цинкмг/дм30,60,325Щелочностьм-моль/дм32,51,75

Таким образом, предложен способ, представляющий новый технологический процесс холодного опреснения высокоминерализованных водных растворов, эффективность которого обусловлена наличием и последовательностью операций, наносекундным импульсным воздействием электромагнитных полей, возможностью опреснять воду с любым содержанием солей. Установка, реализующая этот способ, позволяет минимизировать затраты электроэнергии, имеет значительно меньшие массогабаритные характеристики при высокой производительности, не нуждается в участии в процессе обслуживающего персонала. Неоспоримым достоинством установки является возможность ее создания с использованием стандартных устройств, применяемых в настоящее время в других областях техники.

Похожие патенты RU2284966C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ХОЛОДНОГО ОПРЕСНЕНИЯ, АКТИВАЦИИ И ОЧИСТКИ ВОДЫ ИЗ ЛЮБОГО ПРИРОДНОГО ИСТОЧНИКА 2007
  • Володин Андрей Владимирович
  • Ляпин Андрей Григорьевич
  • Смородин Анатолий Иванович
  • Чалкин Станислав Филиппович
  • Эфендиев Микаэль Бахтиярович
  • Ярошенко Владимир Серафимович
RU2357931C2
СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Масик Игорь Васильевич
  • Филиппов Игорь Анатольевич
  • Либерцев Александр Михайлович
  • Тураев Рамзан Мухданович
RU2466099C2
СПОСОБ ОПРЕСНЕНИЯ И ОЧИСТКИ ВЫСОКОМИНЕРАЛИЗОВАННОЙ ШАХТНОЙ ВОДЫ 1992
  • Корнет Эдуард Александрович[Ua]
  • Иончиков Анатолий Николаевич[Ua]
  • Саенко Василий Климович[Ua]
  • Конашкова Светлана Васильевна[Ua]
  • Казакевич Эдуард Вениаминович[Ua]
  • Пономаренко Дмитрий Иванович[Ua]
RU2048449C1
СПОСОБ МОДИФИКАЦИИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ляпин Андрей Григоревич
  • Мамедов Самир Энвер Оглы
  • Смородин Анатолий Иванович
  • Ярошенко Владимир Серафимович
RU2380396C2
СИСТЕМА ВОДОСНАБЖЕНИЯ НАСЕЛЕННОГО ПУНКТА 2007
  • Зеленский Николай Андреевич
  • Ковалев Георгий Анатольевич
  • Луганцев Евгений Петрович
RU2351715C1
СПОСОБ ОЧИСТКИ ВЫСОКОМИНЕРАЛИЗОВАННОЙ ВОДЫ 2007
  • Лукерченко Вадим Николаевич
  • Маслов Дмитрий Николаевич
  • Шабалина Татьяна Михайловна
  • Молчанов Владимир Александрович
RU2389693C2
Способ отпугивания кротов и других земляных вредителей 2017
  • Щербань Григорий Андреевич
  • Крупский Сергей Александрович
RU2673177C1
СТАНЦИЯ ВОДОПОДГОТОВКИ ДЛЯ ДИФФЕРЕНЦИРОВАННОГО ВОДОПОТРЕБЛЕНИЯ 2017
  • Александров Роман Алексеевич
  • Курчатов Иван Михайлович
  • Лагунцов Николай Иванович
  • Феклистов Дмитрий Юрьевич
RU2702595C2
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ И ОЧИСТКИ ЖИДКИХ СРЕД И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Свищев Александр Иванович
  • Журавлев Игорь Евгеньевич
  • Сотников Виталий Николаевич
  • Масюк Ирина Борисовна
  • Иванютенко Юрий Александрович
  • Беляев Андрей Вячеславович
RU2585635C1
ОБЪЕДИНЕННАЯ СУДОВАЯ СИСТЕМА ПРИГОТОВЛЕНИЯ И КОНДИЦИОНИРОВАНИЯ ПИТЬЕВОЙ ВОДЫ 2017
  • Курников Александр Серафимович
  • Мизгирев Дмитрий Сергеевич
  • Ванцев Владислав Валерьевич
RU2684095C2

Реферат патента 2006 года СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ ПУТЕМ ХОЛОДНОГО ОПРЕСНЕНИЯ ВЫСОКОМИНЕРАЛИЗОВАННЫХ ВОДНЫХ РАСТВОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к технике получения питьевой воды опреснением высокоминерализованной, преимущественно морской, воды. Способ включает многократное дробное озонирование исходной воды малыми порциями озона или озоносодержащей смеси в импульсных электромагнитных полях с наносекундными фронтами. Устройство выполнено в виде четырех основных блоков, в первом из которых в возбудителе и озонаторе образуется однородная парогазовая смесь. Во втором блоке водный раствор обрабатывают в гидродинамическом кавитаторе и флотаторе. Фильтрацию осуществляют в третьем блоке с получением технической воды. Техническая вода подвергается тонкой очистке в четвертом блоке в ультрацентрифуге с сильным электрическим полем и в сепараторах. Устройство содержит дополнительный пятый блок - ионизатор воды и шестой блок - дистиллятор. Технический результат состоит в уменьшении затрат электроэнергии при высокой производительности. 2 н. и 7 з.п. ф-лы, 1 ил., 3 табл.

Формула изобретения RU 2 284 966 C2

1. Способ получения питьевой воды путем холодного опреснения высокоминерализованных водных растворов, включающий операции озонирования исходной воды до получения однородного двухфазного состояния с выравниванием гидродинамических параметров, воздействие импульсными электромагнитными полями и облучение в ультрафиолетовом спектре, последующее осаждение солей, гравитационную сепарацию с раздельным отбором очищенной воды и рассола, отличающийся тем, что воздействию импульсными электромагнитными полями исходная вода подвергается многократно с наносекундной продолжительностью, первичное воздействие осуществляется импульсными электромагнитными полями с независимыми регулируемыми амплитудами импульсов напряжения и тока в зависимости от концентрации суммарных солей, с наносекундными фронтами, озонирование проводится дробным многократным порционным воздействием озонокислородной и/или озоновоздушной смесью, одновременными с гидромеханической кавитацией и электрогидравлическим ударом и отбором выделяемых солей, расщеплением воды на резонансной частоте межмолекулярных связей с последующим центрифугированием в ионизирующем импульсно-частотном электромагнитном поле напряженностью не менее 20,5 кВ/см, с повторным образованием аэрозолей и их сепарацией в электростатических полях постоянной и переменной напряженности, дальнейшим разделением и отбором очищенной воды с заданными свойствами и осаждением солей, при этом процесс происходит при нормальной температуре.2. Способ по п.1, отличающийся тем, что электромагнитное воздействие осуществляется наложением постоянного и переменного токов с напряженностью полей 2,5-3 кВ/см с регулировкой результирующего СВЧ-поля, частота импульсов которого определяется концентрацией суммарных солей в исходной воде.3. Способ по пп.1 и 2, отличающийся тем, что резонансная частота межмолекулярных связей для исходной воды с содержанием солей от 0,3 до 5 г/л составляет 3,5-8,5 кГц, а при концентрации от 5 до 35 г/л - от 10 до 38 кГц.4. Способ по п.1, отличающийся тем, что при концентрации суммарных солей в исходной воде от 0,3 до 5 г/л применяется напряженность результирующего поля 12-16 кВ/см, а при концентрации от 5 до 35 г/л напряженность поля 20,5-21,5 кВ/см, при этом при повторном образовании аэрозолей амплитуда импульсов тока не менее 1,2 кА при концентрации от 0,3 до 5 г/л и 15 кА при концентрации от 5 до 35 г/л.5. Способ по п.1, отличающийся тем, что при повторном образовании аэрозолей на гидромеханическую кавитацию накладывается электрогидравлический удар с синхронным наложением вращающегося магнитного поля с амплитудами от 1,4 Тл при концентрации солей 0,3-5 г/л и 3,7 Тл при концентрации солей 5-35 г/л.6. Способ по п.1, отличающийся тем, что при концентрации солей до 150 г/л исходная вода перед обработкой разбавляется дистиллированной водой до концентрации солей 50 г/л.7. Установка для холодного опреснения высокоминерализованных водных растворов, содержащая устройство озонирования, источники электропитания, перекачивающие насосы и источники выработки озоносодержащего газа, отличающаяся тем, что она выполнена в виде четырех основных последовательно соединенных блоков: блока возбуждения исходной воды в электромагнитных полях с наложением СВЧ-полей, содержащего возбудитель с системой электродов и струйный аппарат, блока озонирования, состоящего из гидромеханического кавитатора и электродинамического флотатора, блока фильтрации, состоящего из последовательно установленных многорядового и молекулярно-магнитных фильтров, блока тонкой очистки, состоящего из центрифуги, установленной в электромагнитном поле с напряженностью не меньше 20,5 кВ и по меньшей мере двух электростатических сепараторов.8. Установка по п.7, отличающаяся тем, что она содержит дополнительный блок получения медицинской и питьевой воды, выполненный в виде ионизатора.9. Установка по п.7, отличающаяся тем, что она содержит дополнительный блок получения дистиллята.

Документы, цитированные в отчете о поиске Патент 2006 года RU2284966C2

УСТАНОВКА ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ 2000
RU2162447C1
СПОСОБ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Боголицын К.Г.
  • Садовников Ю.А.
  • Айзенштадт А.М.
  • Родичев А.Г.
  • Калугин А.Б.
  • Герр Ю.Б.
RU2096342C1
СПОСОБ МНОГОСТАДИЙНОЙ ОБРАБОТКИ ВОДЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Литвинов А.М.
  • Храмов В.Г.
RU2094393C1
WO 9113834 A1 19.09.1991
WO 9714659 A1 24.04.1997
US 5059317 A 22.10.1991.

RU 2 284 966 C2

Авторы

Крупский Сергей Александрович

Ляпин Андрей Григорьевич

Щербань Григорий Андреевич

Ярошенко Владимир Серафимович

Даты

2006-10-10Публикация

2004-12-16Подача