Область техники, к которой относится изобретение
Настоящее изобретение в общем относится к газотурбинным двигателям и, в частности, к турбинным лопаткам или лопастям, имеющим охлаждающие каналы, снабженные группой турбулизаторов, адаптированных к тепловой нагрузке.
Уровень техники
В области газотурбинных двигателей обычной практикой является создание внутренних охлаждающих каналов в турбинных лопатках. Признано также, что различные ступени роторов турбины в двигателе нуждаются в охлаждении в большей или меньшей степени, что зависит от конкретного расположения ступени в турбине. Рабочие лопатки первой ступени турбины обычно требуют наибольшего охлаждения, поскольку рабочие лопатки, расположенные после первых лопаток направляющего аппарата, непосредственно подвергаются воздействию горячих газообразных продуктов сгорания, выходящих из камер сгорания. Известно также, что профиль распределения температуры по каждой турбинной лопатке имеет пик в средней части лопатки и что значения температуры вблизи корня и торца рабочей лопатки несколько ниже, чем значения температуры в средней части.
В некоторых случаях внутри турбинной лопатки выполняют группу охлаждающих каналов, проходящих от корневого участка до торцевого участка. Обычно с целью охлаждения лопаток в эти каналы подают охлаждающий воздух от одной из ступеней компрессора. Эти каналы по всей длине снабжают активаторами турбулентности или турбулизаторами для увеличения теплопередачи охлаждающего воздуха в каналах. Тепловая энергия передается от внешних поверхностей повышенного и пониженного давления турбинных лопаток во внутренние зоны, и тепло отбирается за счет внутреннего охлаждения. Характеристики теплопередачи в оребренных каналах прежде всего зависят от диаметра канала, конфигурации ребер и числа Рейнольдса для газа. На основе целого ряда фундаментальных исследований изучено явление увеличения теплопередачи при разделении газового потока с помощью ребер. При прохождении потока вдоль ребер с развитой поверхностью граничный слой разделяется ниже и выше ребер по направлению потока. Эти расслоения потока восстанавливают связь граничного слоя с теплопередающей поверхностью и, таким образом, увеличивают коэффициент теплопередачи. Разделенный граничный слой усиливает турбулентное перемешивание и тем самым способствует более эффективному рассеиванию тепла из приповерхностного потока в основной поток, увеличивая коэффициент теплопередачи.
Турбулизаторы, используемые в этих каналах, могут иметь различные формы. Например, они могут быть в виде шеврона, прикрепленного к боковой стенке канала, причем шеврон расположен под углом к потоку охлаждающего воздуха в канале.
В патенте США №5413463 представлены охлаждающие каналы с турбулентным потоком, выполненные в рабочей лопатке газотурбинного двигателя, в которых турбулизаторы введены в отдельные области вдоль длины профилированной части от корневого до торцевого участков в зависимости от требований по охлаждению на определенных участках лопатки. Предпочтительно турбулизаторы размещают в средней части турбинной лопатки, в то время как каналы на корневом и торцевом участках лопатки остаются, в основном, гладкими.
Не смотря на существование таких турбинных лопаток, имеющих охлаждающие каналы с турбулентным течением, потребность в лопатках с улучшенным охлаждением сохраняется.
Раскрытие изобретения
Соответственно, задачей настоящего изобретения является обеспечение элемента (компонента) газотурбинного двигателя, имеющего, по меньшей мере, один охлаждающий канал с турбулентностью, соответствующей (адаптированной к) тепловой нагрузке.
Эта задача достигается, в частности, в турбинной лопатке, выполненной в соответствии с настоящим изобретением.
В соответствии с настоящим изобретением предложен элемент газотурбинного двигателя, имеющий улучшенные характеристики охлаждения. Элемент газотурбинного двигателя содержит профилированную часть заданного размаха, по меньшей мере один охлаждающий канал, выполненный в указанной профилированной части от ее корневого участка до торцевого участка, группу средств активации турбулентности в указанном, по меньшей мере, одном охлаждающем канале. Указанные средства активации турбулентности выполнены с изменяющейся вдоль указанного размаха величиной отношения шага между соседними средствами активации турбулентности к высоте каждого из указанных средств активации турбулентности.
В предпочтительных вариантах осуществления изобретения указанное отношение шага к высоте имеет величину меньше в средней области по размаху указанного охлаждающего канала и больше в других областях, в частности в его концевой области. В одном из вариантов в указанных средней области или концевой области отношение шага к высоте составляет от 5 до 30.
Величина отношения шага к диаметру охлаждающего канала может составлять от 0,005 до 0,30.
В различных вариантах указанный шаг в области корневого участка имеет величину, изменяющуюся от 1,27 до 12,7 мм или от 8,89 до 9,195 мм. В других вариантах указанный шаг в средней по размаху области имеет величину, изменяющуюся от 1,27 до 12,7 мм или от 2,794 до 4,572 мм. В еще одном варианте указанный шаг в области торцевого участка имеет величину, изменяющуюся от 1,27 до 12,7 мм или от 4,572 до 7,366 мм.
Высота средства активации турбулентности может иметь величину, изменяющуюся от 0,1016 до 1,27 мм или от 0,2032 до 0,254 мм.
Элемент газотурбинного двигателя может включать турбинную лопатку или представлять собой турбинную лопатку, имеющую группу охлаждающих каналов, каждый из которых содержит группу средств активации турбулентности, отношение шага к высоте которых имеет изменяющуюся вдоль размаха профилированной части величину.
В изобретении также предлагается способ изготовления элемента газотурбинного двигателя, в котором формируют элемент, содержащий профилированную часть, имеющую корневой участок, торцевой участок и заданный размах, и выполняют в указанном элементе, по меньшей мере, один охлаждающий канал, содержащий группу средств активации турбулентности. Средства активации турбулентности выполняют с изменяющейся вдоль размаха величиной отношения шага между соседними средствами активации турбулентности к высоте соответствующего средства активации турбулентности.
В предпочтительных вариантах осуществления изобретения в каждом охлаждающем канале формируют первую область, прилегающую к указанному корневому участку указанной профилированной части, со средствами активации турбулентности, имеющими первое отношение шага к высоте, и формируют среднюю область по размаху каждого указанного охлаждающего канала со средствами активации турбулентности, имеющими второе отношение шага к высоте, величина которого меньше величины указанного первого отношения. Далее, в каждом указанном охлаждающем канале формируют третью область, прилегающую к указанному торцевому участку указанной профилированной части, со средствами активации турбулентности, имеющими третье отношение шага к высоте, величина которого меньше величины указанного второго отношения шага к высоте. Величины указанного третьего отношения шага к высоте больше величины указанного первого отношения шага к высоте.
Данный способ можно использовать для формирования турбинной лопатки посредством технологии отливки.
Краткое описание чертежей
На фиг.1 представлена турбинная лопатка, используемая в газотурбинном двигателе и имеющая группу внутренних охлаждающих каналов.
На фиг.2 представлено сечение охлаждающего канала, выполненного в соответствии с настоящим изобретением.
На фиг.3 представлено сечение по линии 3 - 3 с фиг.2.
На фиг.4 представлен график, описывающий охлаждающий канал с введенной адаптированной турбулентностью, выполненный в соответствии с настоящим изобретением, и
На фиг.5 представлена турбинная лопатка с группой зон, имеющих различное отношение шаг/высота в соответствии с настоящим изобретением.
Осуществление изобретения
На фиг.1 представлена турбинная лопатка 10, закрепленная на основании 12 и имеющая профилированную часть (с аэродинамической поверхностью) 13, в которой проходит группа внутренних охлаждающих каналов 14. Охлаждающие каналы 14 проходят по всей длине лопатки от корневого участка 16 до торцевого участка 18. Охлаждающие каналы 14 имеют выходы у торца лопатки. По охлаждающим каналам проходит охлаждающий газ, в частности воздух, от входов, сообщающихся с источником охлаждающего газа, такого как выходной воздух компрессора, и по всей длине с целью охлаждения материала, в частности металла, из которого выполнена лопатка 10.
В соответствии с настоящим изобретением, как показано на фигурах 2 и 3, каждый из охлаждающих каналов 14 снабжен группой турбулизаторов 30, в предпочтительном варианте имеющих форму разделенных полос, пролегающих вдоль стенок 31 охлаждающих каналов 14. Большинство турбулизаторов 30, имеющих меньшее отношение Р/е шага (Р) к высоте (е), используется в таких областях, как середина размаха профилированной части, где наибольшая расчетная тепловая нагрузка. Число турбулизаторов 30 уменьшается, если не предъявляется повышенных требований по теплопередаче, что приводит к увеличению отношения Р/е в таких областях. Этого можно достичь в соответствии с настоящим изобретением, как показано на фиг.4, изменением отношения Р/е по мере изменения тепловой нагрузки вдоль размаха профилированной части 13. Таким образом, как было указано выше, меньшие отношения Р/е используются в областях, где велика тепловая нагрузка, в основном в середине размаха профилированной части 13, а большие отношения Р/е используются в областях, где не требуется слишком высокая защита от тепловых нагрузок, таких как входные и выходные участки охлаждающего канала.
Как показано на фиг.2, охлаждающий канал 14 имеет входную область 32, в которой турбулизаторы могут иметь уменьшенную высоту (е) и/или увеличенное значение шага (Р) (то есть расстояния между средними точками соседних разделенных полос или турбулизаторов). Охлаждающий канал 14 имеет выходную область 34, в которой турбулизаторы также могут иметь уменьшенную высоту и/или увеличенное значение шага (Р). И, наконец, охлаждающий канал 14 имеет область 36 середины размаха, в которой турбулизаторы могут иметь увеличенную высоту и/или уменьшенный шаг. Хотя показано, что охлаждающий канал 14 имеет одну область середины размаха, он может иметь более чем одну область середины размаха и в каждой области середины размаха иметь различные отношения Р/е.
Турбинная лопатка в соответствии с настоящим изобретением может быть выполнена из любого металла с подходящими характеристиками, известного из предшествующего уровня техники, такого как суперсплав на основе никеля, и может быть выплавлена по соответствующей технологии, известной из предшествующего уровня техники. Охлаждающие каналы 14 и турбулизаторы 30 могут быть выполнены с использованием любой подходящей технологии, такой как STEM-высверливание (электролитическая обработка) или электроэрозионная обработка. В известной турбинной лопатке имеется группа охлаждающих каналов 14, распложенная вдоль хорды профилированной части 13.
На фиг.5 показана турбинная лопатка 10, выполненная в соответствии с настоящим изобретением, в которой через А - Н обозначены восемь зон. В зависимости от расположения конкретного канала шаг турбулизаторов 30 в зонах А, Е, С и G может изменяться от 0,050 дюйма (1,27 мм) до 0,500 дюйма (12,7 мм) и в предпочтительном варианте лежит между 0,180 дюйма (4,572 мм) и 0,290 дюйма (7,366 мм), при этом высота турбулизаторов 30 может изменяться от 0,004 дюйма (0,1016 мм) до 0,050 дюйма (1,27 мм) и в предпочтительном варианте лежит между 0,008 дюйма (0,2032 мм) и 0,010 дюйма (0,254 мм). В зонах В и F шаг может изменяться от 0,050 (1,27 мм) до 0,500 дюйма (1,27 мм) и в предпочтительном варианте лежит между 0,110 дюйма и 0,180 дюйма (4,572 мм), при этом высота турбулизаторов может изменяться от 0,004 дюйма (0,1016 мм) до 0,050 дюйма (1,27 мм) и в предпочтительном варианте лежит между 0,008 дюйма (0,2032 мм) и 0,010 дюйма (0,254 мм). В зонах D и Н шаг может изменяться от 0,050 (1,27 мм) до 0,500 дюйма (12,7 мм) и в предпочтительном варианте лежит между 0,350 дюймами (8,89 мм) и 0,362 дюймами (9,195 мм), при этом высота может изменяться от 0,004 дюйма (0,1016 мм) до 0,050 дюйма (1,27 мм) и в предпочтительном варианте лежит между 0,008 дюйма (0,2032 мм) и 0,010 дюйма (0,254 мм).
В каждой из зон А-Н отношение Р/е может лежать в области от 5 до 30. Кроме того, отношение высоты (е) к диаметру (D) в каждой из зон может лежать в диапазоне от 0,05 до 0,30.
Хотя шаг в конкретной зоне для конкретного охлаждающего канала 14 в лопатке 10 может изменяться от охлаждающего канала к охлаждающему каналу, возможно спроектировать лопатку так, чтобы шаг в конкретной зоне был постоянен для всех охлаждающих каналов.
Хотя турбулизаторы 30 показаны гладкими, они могут, при необходимости, иметь ступенчатую форму.
Кроме того, хотя турбулизаторы 30 показаны с поверхностями, нормальными к направлению потока, проходящему через охлаждающий канал, они могут иметь поверхности, расположенные под углом относительно потока, причем угол может составлять от 30° до 70° относительно потока.
Таким образом, в настоящем изобретении представлена турбинная лопатка, которая больше соответствует требованиям по охлаждению, предъявляемым к турбинным лопаткам. Это достигается за счет изменения плотности расположения турбулизаторов вдоль размаха профилированной части турбинной лопатки.
Хотя схема охлаждения в соответствии с настоящим изобретением описана применительно к турбинной лопатке, можно видеть, что такая же схема охлаждения может быть использована в любом элементе газотурбинного двигателя, имеющем охлаждающие каналы, в которых тепловая нагрузка изменяется по длине охлаждающего канала.
В соответствии с настоящим изобретением предложена схема введения адаптированной турбулентности для турбинных лопаток, которая полностью соответствует указанным выше задачам и преимуществам. Хотя настоящее изобретение представлено на примере его конкретного предпочтительного выполнения, для специалиста в данной области из предшествующего подробного описания будут очевидными альтернативные решения, изменения и модификации. Соответственно, эти альтернативные решения, изменения и модификации охватываются рамками прилагаемой формулы изобретения.
название | год | авторы | номер документа |
---|---|---|---|
ТУРБИННАЯ ЛОПАТКА | 2005 |
|
RU2299991C2 |
ОХЛАЖДАЕМАЯ ЛОПАТКА ДЛЯ ГАЗОВОЙ ТУРБИНЫ | 2013 |
|
RU2559102C2 |
Ротор турбины высокого давления газотурбинного двигателя (варианты) | 2018 |
|
RU2691868C1 |
СПОСОБ И СИСТЕМА АЭРО/ГИДРОДИНАМИЧЕСКОГО РЕГУЛИРОВАНИЯ ПОТОКА НЬЮТОНОВСКОЙ ТЕКУЧЕЙ СРЕДЫ В РАДИАЛЬНОЙ ТУРБОМАШИНЕ | 2013 |
|
RU2642203C2 |
УЛУЧШЕННАЯ СИСТЕМА ОХЛАЖДЕНИЯ ЛОПАСТЕЙ ТУРБИНЫ | 2018 |
|
RU2774132C2 |
Способ охлаждения соплового аппарата турбины низкого давления (ТНД) газотурбинного двигателя и сопловый аппарат ТНД, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата ТНД и лопатка соплового аппарата ТНД, охлаждаемая этим способом | 2018 |
|
RU2691202C1 |
Рабочая лопатка турбины | 2013 |
|
RU2645894C2 |
ОХЛАЖДАЕМАЯ СТЕНКА | 2013 |
|
RU2634986C2 |
Сопловый аппарат турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) (варианты) и лопатка соплового аппарата ТНД (варианты) | 2018 |
|
RU2691203C1 |
ВЫХЛОПНОЙ ПАТРУБОК ПАРОВОЙ ТУРБИНЫ | 2005 |
|
RU2290516C1 |
Изобретение относится к элементу газотурбинного двигателя, в частности турбинной лопатке с улучшенными характеристиками охлаждения. Турбинная лопатка содержит профилированную часть, имеющую некоторый размах, и, по меньшей мере, один охлаждающий канал в профилированной части, проходящий от корневого участка профилированной части к ее торцевому участку. По меньшей мере, в одном охлаждающем канале выполнена группа средств активации турбулентности. Средства активации турбулентности имеют изменяющуюся вдоль указанного размаха величину отношения шага между соседними средствами активации турбулентности к высоте каждого из указанных средств активации турбулентности. Изобретение повышает степень охлаждения лопатки. 2 н. и 20 з.п. ф-лы, 5 ил.
US 5413463 A, 09.05.1995 | |||
ОХЛАЖДАЕМАЯ ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ | 1990 |
|
SU1792118A1 |
SU 1275962 A1, 27.01.1996 | |||
US 4260326 A, 07.04.1981 | |||
US 5975851 A, 21.04.1998 | |||
US 5660524 A, 26.08.1997. |
Авторы
Даты
2006-10-20—Публикация
2005-02-09—Подача