Изобретение относится к строительству, а именно к композитной арматуре, которая применяется в строительных конструкциях: для армирования термоизоляционных стеновых панелей, монолитных бетонных и сборных зданий; для использования в конструктивных элементах зданий в виде отдельных стержней; для армирования грунта оснований зданий и сооружений, в том числе оснований автомагистралей и дорог; для анкеровки в грунте подпорных стен и сооружений.
Известен арматурный элемент, содержащий стержень из высокопрочного полимерного материала и обмотку с уступами (Фролов В.П. Стеклопластиковая арматура и стеклобетонные конструкции. М.: Стройиздат, 1980, с.20-27).
Недостатком такого арматурного элемента является низкая степень сцепления с бетоном, низкая прочность на разрыв и изгиб изделия.
Известна арматура стеклопластиковая по патенту RU 2194135 (опубл. 10.12.2002), содержащая несущий стержень из высокопрочного полимерного материала и обмотку с уступами, которые выполнены в виде жгута нитей, пропитанных связующим и спирально нанесенных с натягом, равным 1/2÷1/10 диаметра вдавливания жгута в поверхность несущего стержня, причем диаметр навивки жгута составляет до 2d, где d - диаметр несущего стержня, при этом стержень может быть снабжен вторым жгутом нитей с противоположным направлением навивки первому, а также может быть выполнен со спиральными канавками, чередующимися с уступами.
Недостатком такого арматурного элемента является низкая прочность на разрыв и изгиб изделия.
Задачей создания изобретения является повышение качества изделия.
Указанная задача изобретения решается путем выполнения арматуры композитной, содержащей несущий стержень из высокопрочного полимерного материала, у которого рельеф поверхности стержня создан обмоточным жгутом, причем соотношение площадей сечений несущего стержня и обмоточного жгута находится в пределах от 3 до 25, обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль несущего стержня, а угол навивки составляет 30-70°, рельеф может быть образован также от вдавливания съемного обмоточного жгута в несущий стержень, причем канавки в сечении имеют обратный профиль обмоточного жгута, а соотношение площадей сечений несущего стержня и съемного обмоточного жгута находится в пределах от 3 до 25, съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль силового стержня, а угол навивки составляет 30-70°.
Отличительными признаками предлагаемой арматуры композитной от указанной выше известной, наиболее близкой к ней, является то, что рельеф поверхности стержня создан обмоточным жгутом, причем соотношение площадей сечений несущего стержня и обмоточного жгута находится в пределах от 3 до 25, обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль несущего стержня, а угол навивки составляет 30-70°, рельеф может быть образован также от вдавливания съемного обмоточного жгута в несущий стержень, причем канавки в сечении имеют обратный профиль обмоточного жгута, а соотношение площадей сечений несущего стержня и съемного обмоточного жгута находится в пределах от 3 до 25, съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль силового стержня, а угол навивки составляет 30-70°.
Благодаря наличию этих признаков у композитной арматуры повышается прочность на разрыв и изгиб.
Арматуру композитную изготавливают методом продольной протяжки со спиральной намоткой уступов из высокопрочного полимерного материала (стеклянных, базальтовых, углеродных и др. волокон), пропитанного эпоксидным компаундом на основе смолы ЭД-20 с отвердителем в соотношении, указанном в рецептуре (см. патент США 4829733, кл. 52-309.11, 1989 г.).
После отверждения полученный стержень разрезают на отрезки необходимой длины. Способ получения арматуры прост, технологичен, не требует разработки специального оборудования и не требует дополнительных капитальных затрат.
Изобретение поясняется чертежами.
На фиг.1 изображена арматура композитная с рельефом поверхности стержня, созданным обмоточным жгутом.
На фиг.2 изображена арматура композитная с рельефом поверхности стержня, созданным от вдавливания съемного обмоточного жгута в несущий стержень.
На фиг.3 изображена арматура композитная с углом спиральной навивки 30° и 70°.
На фиг.4 показан график зависимости физико-механических свойств от угла нанесения спиральной навивки.
На фиг.5 показана зависимость между соотношением площадей сечений несущего стержня и жгута.
Арматура композитная содержит несущий стержень 1 (фиг.1) из высокопрочного полимерного материала (например, стекловолокно ГОСТ 17139-79, СВМ ТУ 6-06-1153-78, базальтовое волокно НРБ ТУ 5952-001-13308094-04) и обмотку с уступами 2. Уступы 2 выполнены в виде жгута таких же волокон, пропитанных связующим (например, эпоксидная смола ЭД-20 ГОСТ 10587-84 или полиэфирные смолы). Уступы 2 нанесены спирально с натягом, угол спиральной навивки составляет 30-70°, причем соотношение площадей сечений несущего стержня и обмоточного жгута от 3 до 25, а съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль несущего стержня.
Арматура композитная может быть выполнена с рельефом поверхности, образованным от вдавливания съемного обмоточного жгута 3 в несущий стержень 4 (фиг.2), причем канавки в сечении имеют обратный профиль обмоточного жгута, а соотношение площадей сечений несущего стержня и съемного обмоточного жгута находится в пределах от 3 до 25, съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль силового стержня, а угол навивки составляет 30°-70°.
При проведении испытаний арматуры композитной была выявлена зависимость физико-механических свойств от угла нанесения спиральной навивки. При угле навивки жгута на несущий стержень менее 30° разрушающее напряжение при разрыве σр достигает величины 1600 МПа. При угле навивки жгута на несущий стержень более 70° величина разрушающего напряжения при разрыве σр равна 1000 МПа (фиг.4).
Навивка жгута при угле более 70° производится с малым шагом, что уменьшает рельефность и ухудшает анкерующие свойства арматуры. При углах навивки жгута на несущий стержень менее 45° спиральная навивка выполняет не только функцию стягивания несущего стержня, но и влияет на улучшение физико-механических свойств арматуры, а при углах навивки жгута на несущий стержень менее 30° технически сложно обеспечить необходимую глубину вдавливания спиральной навивки в тело несущего стержня, что ухудшает анкерующие свойства арматуры.
Также при проведении испытаний арматуры композитной была выявлена зависимость между соотношением площадей сечений несущего стержня и жгута (фиг.5). Как видно из таблицы, чем меньше соотношение между площадью сечения несущего стержня и площадью сечения жгута спиральной навивки, тем выше величина разрушающего напряжения при разрыве σр, и чем больше это соотношение, тем меньше величина разрушающего напряжения при разрыве σр.
Изготовление арматуры композитной с улучшенными показателями прочности на разрыв и на изгиб происходит за счет регулирования натяжения ровингов несущего стержня и обмоточного жгута спиральной намотки, которая осуществляется с натягом для вдавливания жгута в «сырой» стержень. При обмотке жгут формирует стержень, одновременно вдавливаясь в него, и создает периодический профиль, причем жгут спиральной намотки за счет натяжения приобретает форму эллипса, большая ось которого расположена вдоль силового стержня, что увеличивает прочность сцепления с бетоном.
Предлагаемая арматура композитная 1-го и 2-го вариантов исполнения обладает повышенной прочностью на разрыв, на изгиб, и как следствие повышается несущая способность строительных конструкций.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИТНАЯ СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА (ВАРИАНТЫ) | 2012 |
|
RU2520542C1 |
АРМАТУРА КОМПОЗИТНАЯ (ВАРИАНТЫ) | 2008 |
|
RU2384677C2 |
АРМАТУРА КОМПОЗИТНАЯ (ВАРИАНТЫ) | 2008 |
|
RU2384676C1 |
НЕМЕТАЛЛИЧЕСКИЙ АРМАТУРНЫЙ ЭЛЕМЕНТ С ПЕРИОДИЧЕСКОЙ ПОВЕРХНОСТЬЮ И СПОСОБ ИЗГОТОВЛЕНИЯ НЕМЕТАЛЛИЧЕСКОГО АРМАТУРНОГО ЭЛЕМЕНТА С ПЕРИОДИЧЕСКОЙ ПОВЕРХНОСТЬЮ | 2014 |
|
RU2579053C2 |
КОМПОЗИТНАЯ АРМАТУРА | 2008 |
|
RU2405092C2 |
Арматура композитная | 2015 |
|
RU2612284C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ | 2005 |
|
RU2287431C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ | 2008 |
|
RU2371312C1 |
Гибридная композитная штанга | 2022 |
|
RU2786983C1 |
КОМБИНИРОВАННЫЙ МЕТАЛЛОВОЛОКОННЫЙ КАНАТ | 2023 |
|
RU2818634C1 |
Изобретение относится к строительству, а именно к композитной арматуре, которая применяется в строительных конструкциях: для армирования термоизоляционных стеновых панелей, монолитных бетонных и сборных зданий; для использования в конструктивных элементах зданий в виде отдельных стержней; для армирования грунта оснований зданий и сооружений, в том числе оснований автомагистралей и дорог; для анкеровки в грунте подпорных стен и сооружений. Арматура композитная содержит несущий стержень из высокопрочного полимерного материала, у которого рельеф поверхности создан обмоточным жгутом, причем соотношение площадей сечений несущего стержня и обмоточного жгута находятся в пределах от 3 до 25, обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль несущего стержня, а угол навивки составляет 30-70°, рельеф может быть образован также от вдавливания съемного обмоточного жгута в несущий стержень, причем канавки в сечении имеют обратный профиль обмоточного жгута, а соотношение площадей сечений несущего стержня и съемного обмоточного жгута находятся в пределах от 3 до 25, съемный обмоточный жгут в сечении имеет форму эллипса, большая ось которого расположена вдоль силового стержня, а угол навивки составляет 30-70°. Изготовление арматуры композитной с улучшенными показателями прочности на разрыв и на изгиб происходит за счет регулирования натяжения ровингов несущего стержня и обмоточного жгута спиральной намотки, которая осуществляется с натягом для вдавливания жгута в "сырой" стержень. При обмотке жгут формирует стержень, одновременно вдавливаясь в него, и создает периодический профиль, причем жгут спиральной намотки за счет натяжения приобретает форму эллипса, большая ось которого расположена вдоль силового стержня, что увеличивает прочность сцепления с бетоном. Предлагаемая арматура композитная 1-го и 2-го вариантов исполнения обладает повышенной прочностью на разрыв, на изгиб, и как следствие повышается несущая способность строительных конструкций. 2 н.п. ф-лы, 5 ил.
АРМАТУРА СТЕКЛОПЛАСТИКОВАЯ (ВАРИАНТЫ) | 2000 |
|
RU2194135C2 |
УПЛОТНЯЮЩИЙ ЭЛЕМЕНТ УСТРОЙСТВА ДЛЯ ДОЗИРОВАНИЯ | 0 |
|
SU199348A1 |
НАСАДОК К ТУРБОРЕАКТИВНОМУ ДВИГАТЕЛЮ ТЕПЛОВОЙ МАШИНЫ ДЛЯ УДАЛЕНИЯ ЛЬДА | 0 |
|
SU363779A1 |
Арматурный элемент | 1986 |
|
SU1325152A1 |
ФРОЛОВ В.П | |||
Стеклопластиковая арматура и стеклобетонные конструкции | |||
- М.: Стройиздат, 1980, с.20-27. |
Авторы
Даты
2006-11-20—Публикация
2005-03-21—Подача