СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ Российский патент 2009 года по МПК B29C55/30 B29C53/56 E04C5/07 

Описание патента на изобретение RU2371312C1

Изобретение относится к технологии изготовления арматурных элементов для армирования обычных и предварительно напряженных строительных конструкций.

Известен способ изготовления композитной неметаллической арматуры, приведенный в описании к патенту РФ №2194617 (опубл. 2002.12.20), включающий термообработку пучка волокон, формование поперечного профиля и полимеризацию пропитанного полимерным связующим пучка волокон, причем формование изделия производится при протягивании через последовательно установленные термокамеры с фильерами постепенно уменьшающегося сечения, и поперечная обмотка осуществляется перед последней термокамерой.

Недостатками данного способа являются невозможность изготовления композитной арматуры периодического профиля с высокими анкерующими свойствами, низкая производительность процесса.

Известен способ изготовления композитной неметаллической арматуры (Фролов Н.Л. «Стеклопластиковая арматура и стеклобетонные конструкции». Москва, Стройиздат, 1980 г., с.20-24), включающий протягивание сформированного и пропитанного полимерным связующим массива из нитей ровингов через отжимное устройство, устройство спиральной намотки и полимеризационную камеру.

Недостатком данного способа является невысокая производительность процесса изготовления композитной арматуры. В описанном процессе скорость протяжки стеклопластиковой арматуры диаметром 6 мм равна 20 м/ч.

Наиболее близким аналогом является способ изготовления композитной арматуры периодического профиля, приведенный в описании к патенту РФ №2287431 (опубл. 2006.11.20), включающий протягивание сформированного и пропитанного полимерным связующим полотна из нитей ровинга через отжимное устройство, устройство спиральной намотки и полимеризационную камеру, в котором из нитей ровинга после размотки формируют от 2 до 10 отдельных пучков, затем каждый пучок раздельно пропитывают полимерным связующим, отжимают, протягивают и формуют профиль арматуры путем объединения пучков ровинга в единый стержень при выполнении спиральной намотки обмоточным жгутом.

Недостатком данного способа является ухудшение свойств арматуры при производительности процесса более 65 м/ч из-за закрутки волокон несущего стержня, которая ухудшает качество арматуры.

Предлагаемым изобретением решается задача повышения производительности процесса при одновременном улучшении качества арматуры.

Для достижения указанного технического результата способ изготовления композитной арматуры, включающий термообработку пучка волокон, формование поперечного профиля и полимеризацию связующего в термокамерах, отличается тем, что формование и обмотку поперечного профиля производят в 4 этапа, на 1 этапе формуют плоское или фигурное полотно путем протягивания пучка волокон через матрицу со щелевым каналом, на 2 этапе формуют цилиндрический профиль арматуры путем протягивания пучка волокон через матрицу с цилиндрическим каналом, на 3 этапе формуют профиль арматуры путем спиральной намотки первого обмоточного жгута, на 4 этапе производят доводку профиля арматуры путем спиральной намотки второго обмоточного жгута, причем намотку вторым обмоточным жгутом производят в направлении, противоположном первому, а шаг и угол намотки второго жгута не равны шагу и углу намотки первого обмоточного жгута.

Отличительными признаками предлагаемого способа изготовления композитной арматуры от указанного выше наиболее близкого является то, что формование и обмотку поперечного профиля производят в 4 этапа, на 1 этапе формуют плоское или фигурное полотно путем протягивания пучка волокон через матрицу со щелевым каналом, на 2 этапе формуют цилиндрический профиль арматуры путем протягивания пучка волокон через матрицу с цилиндрическим каналом, на 3 этапе формуют профиль арматуры путем спиральной намотки первого обмоточного жгута, на 4 этапе производят доводку профиля арматуры путем спиральной намотки второго обмоточного жгута, причем намотку вторым обмоточным жгутом производят в направлении, противоположном первому, а шаг и угол намотки второго жгута не равны шагу и углу намотки первого обмоточного жгута.

Благодаря наличию этих признаков при использовании данного способа получена композитная арматура рельефного профиля с высокими анкерующими свойствами при производительности процесса 98 м/ч. Устранение разделения волокон на пучки повышает производительность процесса, устраняет спутывание волокон между пучками, уменьшает граничное трение пучков, т.е. повышаются технологические удобства при работе.

Способ изготовления композитной арматуры по предлагаемому изобретению осуществляется следующим образом. Ровинги из различных волокон (стеклянных, базальтовых, углеродных и прочих) сматываются с бобин, для удаления влаги проходят камеру отжига, затем в ванне пропитываются полимерным связующим, после чего излишки полимерного связующего отжимаются. Далее массив подготовленных нитей ровингов пропускают через матрицу, имеющую канал с регулируемым размером щели, т.е. формируют плоское или фигурное полотно (1 этап). На первом этапе формования профиля плоское или фигурное полотно массива нитей ограничено стенками матрицы, что предотвращает закрутку волокон. Размеры щелевого канала должны быть такими, чтобы при воздействии скручивающих усилий профиль не преобразовался в круглый, т.е. толщина щели должна быть меньше диаметра сечения несущего цилиндрического стержня арматуры. В центре плоского канала происходит уплотнение волокон за счет последующего формоизменения в цилиндрическое сечение, что создает более уплотненное сечение по сравнению с прототипом. Фигурное полотно нитей препятствует чрезмерному уплотнению волокон в центре плоского щелевого канала, что предотвращает обрывы нитей и повышает надежность работы данного способа. На втором этапе плоское или фигурное полотно массива нитей протягивают через матрицу с цилиндрическим каналом и преобразуют в стержень цилиндрической формы. Диаметр цилиндрического канала матрицы должен быть больше диаметра сечения несущего цилиндрического стержня арматуры. Цилиндрический канал матрицы берет на себя компенсацию различной жесткости полотна по длине и толщине и ограничивает крутильные колебания своими жесткими стенками, т.е. создаются благоприятные условия для формирования несущего стержня арматуры. В случае намотки плоского полотна нитей обмоточным жгутом без использования матрицы с цилиндрическим каналом происходят переменные радиальные колебания изделия (из-за различной жесткости полотна вдоль оси), что ухудшает качество изделия. На третьем этапе формования производят нанесение спиральной обмотки по предварительно подготовленному пучку волокон, имеющему цилиндрическую форму. За счет прохождения пучка волокон через щелевой и цилиндрический каналы волокна предварительно уплотнены. Спиральная обмотка производится с натяжением обмоточного жгута, позволяющего дополнительно уплотнить волокна в стержень и создать сцепление со стержнем. Спиральная намотка осуществляется с усилием, достаточным для вдавливания обмоточного жгута в «сырой» стержень. Это предварительный этап создания профиля арматуры, который требует доводки для получения качественных изделий. После этого производится доводка профиля арматуры спиральной намоткой второго обмоточного жгута. Доводочный этап необходим для прикрепления рельефной обмотки к несущему стержню. Вторая обмотка наносится по первой обмотке с меньшим усилием натяжения обмоточного жгута. Шаг, угол, направление навивки второго обмоточного жгута должны быть отличны от шага, угла, направления навивки первого обмоточного жгута. Эти условия необходимы для более частого пересечения второй обмотки первого жгута, что позволяет повысить адгезию жгута к несущему стержню, а также для уплотнения несущего стержня между витками первой обмотки. После нанесения второй обмотки получается рельефный профиль композитной арматуры высокого качества. Затем арматура поступает в термокамеры для нагрева и полимеризации полимерного связующего. Отвержденное изделие разрезается на отрезки необходимой длины.

При осуществлении первой спиральной намотки обмоточный жгут создает касательное усилие и производит закручивание волокон пластичного несущего стержня. Закрутка волокон стержня распространяется в сторону тянущего устройства, а с другой стороны она ограничена стенками плоского канала. До скорости 70 м/ч усилие закрутки компенсируется усилием натяжения волокон несущего стержня. При скоростях более 70 м/ч происходит увеличение оборотов намоточного устройства, что приводит к увеличению касательных усилий при постоянных усилиях натяжения несущего стержня и закрутке волокон стержня. Закрутка волокон ухудшает прочность арматуры.

Выполнение спиральной накрутки противоположного направления создает на стержне компенсирующее касательное усилие противоположного направления и предотвращает закрутку волокон несущего стержня.

Пример. При изготовлении неметаллической композитной арматуры периодического профиля с наружным диаметром 8 мм использовался наполнитель - базальтовый ровинг и полимерное связующее на основе эпоксидных смол.

Перед началом работы производится раскладка ровингов по тракту линии. При работе тянущий механизм протягивает ровинги через разделительное устройство, камеру отжига, пропиточную ванну, отжимное устройство, канал формирования плоского или фигурного полотна ровингов (1 этап), канал круглого сечения, преобразующее полотно ровингов в круглый стержень (2 этап), первое обмоточное устройство (3 этап), формующее спиральный профиль арматуры второе обмоточное устройство, второе обмоточное устройство, наносящее на арматуру вторую спиральную обмотку (4 этап). После формирования профиля изделие поступает в термокамеры для нагрева и отверждения полимерного связующего с последующей резкой нужной длины.

При изготовлении базальтопластиковой арматуры первый обмоточный жгут имел условный наружный диаметр 2,5 мм, второй обмоточный жгут имел условный наружный диаметр 0,5 мм. Скорость изготовления композитной арматуры составила 98 м/ч. Шаг нанесения первой обмотки составил 11 мм, шаг нанесения второй обмотки противоположного направления составил 4 мм.

Композитная арматура «лиана», изготовленная по этому способу, имеет следующие данные:

- разрушающее напряжение при разрыве σ=1380 МПа;

- модуль упругости при растяжении Е=49500 МПа.

При изготовлении композитной арматуры без применения данного способа разрушающее напряжение при разрыве составляет σ=650-700 МПа.

Как следует из результатов испытаний, реализация способа позволяет получить композитную арматуру рельефного профиля с высокой анкерующей способностью при высокой производительности процесса.

Похожие патенты RU2371312C1

название год авторы номер документа
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ 2008
  • Шахов Антон Сергеевич
  • Шабалин Семен Игоревич
  • Шабалин Станислав Игоревич
  • Лялин Евгений Викторович
RU2384408C2
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ 2008
  • Шахов Антон Сергеевич
  • Шахов Сергей Владимирович
  • Шабалин Семен Игоревич
  • Шабалин Станислав Игоревич
  • Лялин Евгений Викторович
  • Степанова Валентина Федоровна
RU2389853C1
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ АРМАТУРНОЙ СЕТКИ 2009
  • Шахов Антон Сергеевич
  • Шахов Сергей Владимирович
  • Шабалин Семен Игоревич
  • Шабалин Станислав Игоревич
  • Лялин Евгений Викторович
  • Степанова Валентина Федоровна
  • Степанов Александр Юрьевич
  • Красовская Галина Михайловна
RU2394135C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ 2005
  • Шахов Сергей Владимирович
  • Беленчук Валерий Васильевич
  • Буторин Петр Васильевич
  • Степанова Валентина Федоровна
  • Красовская Галина Михайловна
RU2287431C1
Способ изготовления стержневых изделий 2016
  • Булат Анатолий Дмитриевич
  • Строчков Владимир Евгеньевич
RU2646930C1
СПОСОБ ИЗГОТОВЛЕНИЯ АРМАТУРНОЙ СЕТКИ 2009
  • Шахов Антон Сергеевич
  • Шахов Сергей Владимирович
  • Шабалин Семен Игоревич
  • Шабалин Станислав Игоревич
  • Лялин Евгений Викторович
  • Степанова Валентина Федоровна
  • Степанов Александр Юрьевич
RU2404892C1
КОМПОЗИТНАЯ АРМАТУРА 2008
  • Шахов Антон Сергеевич
  • Шахов Сергей Владимирович
  • Шабалин Семен Игоревич
  • Шабалин Станислав Игоревич
  • Лялин Евгений Викторович
  • Степанова Валентина Федоровна
RU2405092C2
УСТРОЙСТВО СПИРАЛЬНОЙ ОБМОТКИ КОМПОЗИТНОЙ АРМАТУРЫ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ С УСТРОЙСТВОМ СПИРАЛЬНОЙ ОБМОТКИ КОМПОЗИТНОЙ АРМАТУРЫ 2013
  • Гетунов Александр Николаевич
  • Петров Геннадий Гурьевич
  • Харьковский Сергей Николаевич
RU2547036C2
УСТРОЙСТВО ПОДКРУТКИ НИТЕЙ РОВИНГА НЕСУЩЕГО СТЕРЖНЯ КОМПОЗИТНОЙ АРМАТУРЫ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ С УСТРОЙСТВОМ ПОДКРУТКИ 2013
  • Гетунов Александр Николаевич
  • Петров Геннадий Гурьевич
  • Харьковский Сергей Николаевич
RU2531711C2
УСТРОЙСТВО СКРУТКИ СЕРДЕЧНИКА КОМПОЗИТНОЙ АРМАТУРЫ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ С УСТРОЙСТВОМ СКРУТКИ СЕРДЕЧНИКА КОМПОЗИТНОЙ АРМАТУРЫ 2013
  • Гетунов Александр Николаевич
  • Петров Геннадий Гурьевич
  • Харьковский Сергей Николаевич
RU2534130C2

Реферат патента 2009 года СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ

Изобретение относится к способу изготовления композитной арматуры периодического профиля. Способ изготовления композитной арматуры включает термообработку пучка волокон, формование поперечного профиля и полимеризацию связующего в термокамерах. Формование и обмотку поперечного профиля производят в четыре этапа. На первом этапе формуют плоское или фигурное полотно путем протягивания пучка волокон через матрицу со щелевым каналом. На втором этапе формуют цилиндрический профиль арматуры путем протягивания пучка волокон через матрицу с цилиндрическим каналом. На третьем этапе формуют профиль арматуры путем спиральной намотки первого обмоточного жгута. На четвертом этапе производят доводку профиля арматуры путем спиральной намотки второго обмоточного жгута. При этом намотку вторым обмоточным жгутом производят в направлении, противоположном первому, а шаг и угол намотки второго жгута не равны шагу и углу намотки первого обмоточного жгута. Достигаемый при этом технический результат заключается в повышении производительности процесса изготовления композитной арматуры, а также в увеличении качества изготавливаемой арматуры.

Формула изобретения RU 2 371 312 C1

Способ изготовления композитной арматуры периодического профиля, включающий термообработку пучка волокон, формование поперечного профиля и полимеризацию связующего в термокамерах, отличающийся тем, что формование и обмотку поперечного профиля производят в четыре этапа, на первом этапе формуют плоское или фигурное полотно путем протягивания пучка волокон через матрицу со щелевым каналом, на втором этапе формуют цилиндрический профиль арматуры путем протягивания пучка волокон через матрицу с цилиндрическим каналом, на третьем этапе формуют профиль арматуры путем спиральной намотки первого обмоточного жгута, на четвертом этапе производят доводку профиля арматуры путем спиральной намотки второго обмоточного жгута, причем намотку вторым обмоточным жгутом производят в направлении, противоположном первому, а шаг и угол намотки второго жгута не равны шагу и углу намотки первого обмоточного жгута.

Документы, цитированные в отчете о поиске Патент 2009 года RU2371312C1

СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ 2005
  • Шахов Сергей Владимирович
  • Беленчук Валерий Васильевич
  • Буторин Петр Васильевич
  • Степанова Валентина Федоровна
  • Красовская Галина Михайловна
RU2287431C1
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ АРМАТУРЫ 2005
  • Шахов Сергей Владимирович
  • Беленчук Валерий Васильевич
  • Буторин Петр Васильевич
  • Степанов Александр Юрьевич
  • Красовская Галина Михайловна
RU2287646C1
ЗАЩИТНАЯ ОБОЛОЧКА ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 1993
  • Майоров Б.Г.
  • Смыслов В.И.
  • Овчинникова В.И.
  • Хомяков П.С.
  • Алеев В.А.
  • Соболев Н.И.
RU2096678C1
СПОСОБ ИЗГОТОВЛЕНИЯ БИПЛАСТМАССОВЫХ ТРУБ 2004
  • Арефьев Николай Николаевич
  • Мунябин Леонид Иванович
  • Мунябин Кирилл Леонидович
  • Арефьев Николай Николаевич
RU2271930C2
Способ контроля глубины проплавления при электронно-лучевой сварке 1977
  • Коржев Вячеслав Владимирович
  • Олевский Виктор Аронович
SU742075A1
JP 5084836 A, 06.04.1993
RU 2005107865 A, 10.09.2006.

RU 2 371 312 C1

Авторы

Шахов Антон Сергеевич

Шабалин Семен Игоревич

Шабалин Станислав Игоревич

Лялин Евгений Викторович

Даты

2009-10-27Публикация

2008-04-16Подача