РЕАКТИВНАЯ ТУРБИНА Российский патент 2006 года по МПК F01D1/32 

Описание патента на изобретение RU2287695C2

Изобретение относится к области энергомашиностроения, а именно к стационарным и транспортным турбинным установкам. Может быть использовано в судовых и в других энергетических системах, а также в качестве силовой установки транспортных средств.

Известны реактивные турбины, содержащие ротор, направляющий аппарат и рабочие лопатки [1].

Недостатки этих турбин - сложное конструктивное оформление проточной части, имеющей два вида облопачивания, и сравнительно низкая эффективность.

Известна реактивная турбина, содержащая ротор, устройства подвода текучей среды, входное сопло и выходное реактивное сопло, расположенное в плоскости вращения турбины, при этом его ось перпендикулярна радиусу турбины [2]. Эта турбина принята за прототип.

Недостатки прототипа - большие гидравлические потери в каналах подвода рабочего тела, сравнительно низкая эффективность.

Технический результат изобретения - повышение эффективности реактивной турбины за счет использования энергии текучей среды, в том числе упрощение конструкции, снижение массы и габаритов турбины, расхода и необходимых для транспортных средств запасов топлива.

Технический результат достигается тем, что в известном устройстве, состоящем из ротора, устройств подвода текучей среды, снабженных входным соплом и выходным реактивным соплом, расположенным в плоскости вращения турбины, с осью, перпендикулярной ее радиусу, ротор турбины содержит не менее четырех устройств подвода текучей среды к выходным реактивным соплам и, по меньшей мере, одно средство ионизации текучей среды. Каждое устройство подвода текучей среды к реактивному соплу имеет не менее двух сопел на одной оси. При этом, по меньшей мере, одно сопло жестко или с возможностью осевого перемещения соосно введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости. Причем не менее чем одна полость сообщена с устройствами подачи и отсоса текучей среды. Средства ионизации размещены, по меньшей мере, в одной полости одного из устройств подвода текучей среды. Во всех полостях установлены датчики давления, а во входном и выходном реактивных соплах - датчики скорости. Струя текучей среды из выходного реактивного сопла устройства подвода текучей среды направлена на входное сопло предыдущего устройства подвода текучей среды, при этом ротор снабжен цилиндрическим корпусом, в котором вблизи входного сопла каждого устройства подвода текучей среды размещены щели.

Реактивная турбина представлена на фиг.1. (сечение перпендикулярно валу). На фиг.2 дана схема устройства подвода текучей среды к реактивному соплу.

Предлагаемая турбина (фиг.1) содержит ротор 1 на валу 2, устройство подвода текучей среды 3 в плоскости вращения ротора, 4 - спицы, 5 - входное сопло со срезом, выходное (реактивное) сопло 6 со срезом, цилиндрический корпус ротора 7 (для снижения сопротивления трения при его вращении), щели 8 на цилиндрическом корпусе ротора 7 вблизи входного сопла 5, несущую пластину ротора 9. Устройство подвода текучей среды 3 устанавливается на спицах 4 или крепится на несущей пластине 9, в том числе с обеих ее сторон. Устройство подвода текучей среды 3 (фиг.2) содержит размещенные соосно сужающееся сопло 10 с входным сечением 11 и критическим сечением 12, сужающееся сопло 13 с критическим сечением 14 и полость 15 между этими соплами. В полости 15 помещены средства ионизации текучей среды 16 и клапаны 17 на стенке полости. Далее по ходу движения воздуха вдоль центральной оси блока следуют сопло 18 с критическим сечением 19 и сопло 20 с критическим сечением 21, выходным сечением 22 и выходным соплом со срезом 23. Между соплами 13 и 18 имеется полость 24, а между соплами 18 и 20 - полость 25. При этом сопла 10 и 13, а также 13 и 18, 18 и 20 в местах соединения между собой герметичны. К полостям 15, 24 и 25 подсоединены устройства отсоса и подачи текучей среды (газа, например, воздуха) 26 внутрь этих полостей.

Устройство работает следующим образом. Рассмотрим вариант воздушной турбины. Пусть в одной паре устройств подвода текучей среды, например в паре (I и III, фиг.1), в каждом устройстве подвода текучей среды 3 имеется по одной полости со средствами ионизации воздуха. Производят ионизацию воздуха в полости 15, например, одновременно в обоих устройствах подвода текучей среды, с использованием одного или нескольких средств ионизации 16, размещенных в полости. При этом впускные клапаны 17 закрыты. Такими средствами ионизации могут быть нанесенные на внутренние поверхности стенки полости электроды, соединенные с полюсами источника напряжения электротока, или магнитные полосы. Средствами ионизации могут быть также источник искусственного потока элементарных частиц с энергией в интервале от 10 эВ до 1,25·1045 эВ или нанесенные на стенки полости покрытия, содержащие радиоактивные элементы. Ионизацию осуществляют, например, возбуждением в воздухе в полости электрического разряда переменным электрическим и/или магнитным полем. Или путем ввода в полость катализатора процесса ионизации (инертный газ (например, аргон), элементы четвертой группы периодической таблицы химических элементов (например, углерод)) и др. В результате такого воздействия молекулы воздуха (азота и кислорода) частично разрушаются с выделением большого количества тепла и кинетической энергии [3]. Поток расширенного в полости 15 газа вылетает к центральной оси устройства, увлекая (эжектируя) при этом воздух из внешней среды через входное сечение 11. Далее клапаны 17 открываются и в полость 15 поступает (впрыскивается) воздух из внешней среды или из источника сжатого воздуха. Частота выполнения таких операций (пульсаций) регулируется и может быть достаточно высокой, чтобы обеспечить квазинепрерывный характер работы. Эта частота пульсаций должна быть достаточной, чтобы крутящий момент начал раскручивать турбину. Возникающий при этом поток воздуха выходит из реактивных сопел 6 первой пары устройств подвода текучей среды турбины и направляется во входные сопла со срезом следующего устройства подвода текучей среды. Срез каждого сопла обеспечивает необходимую направленность потока. В нем нет средств ионизации воздуха, он состоит из 2-3 сужающихся сопел с входным и выходным соплом со срезом и с одной или двумя полостями. Поступающий в эти устройства подачи текучей среды воздух вакуумирует полости, за счет чего скорость потока в этих устройствах растет, в устройства подвода текучей среды засасывается также дополнительно воздух через сопло 10 и щели 8 из внешней среды. Полученная потоком дополнительная энергия в устройствах подвода текучей среды II и IV покрывает все потери энергии потока (на трение в устройствах 3 и другие). Турбина наберет заданное число оборотов, как только скорость потока текучей среды во всех устройствах подвода текучей среды будет одинаковой и соответствовать заданной величине вакуума во всех полостях устройств 3. В дальнейшем турбина будет работать без затрат энергии (топлива) за счет энергии вакуума.

Рассмотренный режим работы турбины не единственный. Возможен вариант работы, при котором впрыскивание и ионизация воздуха в полости 15 производятся непрерывно. Тогда энергия, выделяемая при разложении атомов воздуха в полости 15, будет дополнять, усиливать энергетический эффект движения воздуха в устройствах подвода текучей среды турбины, полученных от самовакуумирования полостей 24 и 25.

Регулировка скорости потока на выходе из турбины в реальном времени производится путем управления величиной вакуума в полостях 15, 24 и 25. Для этого предусмотрены устройства 26 для отсоса воздуха при необходимости увеличения скорости и подачи воздуха для уменьшения скорости потока. При этом используются показания датчиков давления, установленных во всех полостях, и датчиков скорости на входных и выходных соплах обоих устройств подвода текучей среды. Для регулировки скорости вакуумирования полости можно использовать осевое перемещение сопла.

Мощность турбины может быть значительно увеличена при использовании на одном валу нескольких предлагаемых конструкций, при этом их реактивные сопла целесообразно размещать в шахматном порядке.

Таким образом, использование изобретения позволит упростить конструкцию турбины, уменьшить удельные массо-габаритные и стоимостные характеристики, в частности за счет существенного снижения расхода топлива, запасов топлива (на транспортных средствах).

Использованные источники

1. А.В.Щегляев. Паровые турбины. Теория теплового процесса и конструкции турбин. М.-Л.: ГЭИ. 1955, с.136, 199-224.

2. Патент RU 2193669, кл. 7 F 01 D 1/32, публ. 2002.11.27.

3. Е.И.Андреев, О.А.Ключарев, А.П.Смирнов, Р.А.Давыденко. Естественная энергетика. - СПб: Нестор, 2000. - 122 с.

4. Патент WO 03/25379, кл. 7 F 02 К 7/00, публ. 2003.03.27.

Похожие патенты RU2287695C2

название год авторы номер документа
РЕАКТИВНАЯ ВОЗДУШНАЯ ТУРБИНА 2004
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
  • Баранов Эдуард Михайлович
RU2287696C2
АКТИВНОЕ КРЫЛО 2004
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2281877C1
ТРАНСЗВУКОВОЙ ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ СУДНА 2013
  • Турышев Борис Иванович
  • Бабкин Игорь Чуварович
  • Медведский Сергей Николаевич
RU2534155C2
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ ПОДВОДНОГО СУДНА 2007
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2343087C1
УСКОРИТЕЛЬ ПОТОКА ЖИДКОСТИ 2007
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2343086C1
ВОЗДУШНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА 2004
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2282047C1
НОС СУДНА 2007
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2336193C1
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬ СУДНА 2007
  • Соловьев Александр Петрович
  • Турышев Борис Иванович
RU2345926C2
СПОСОБ СОЗДАНИЯ СИСТЕМЫ СИЛ ЛЕТАТЕЛЬНОГО АППАРАТА ВЕРТИКАЛЬНОГО ВЗЛЁТА И ПОСАДКИ И ЛЕТАТЕЛЬНЫЙ АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Амброжевич Александр Владимирович
  • Мигалин Константин Валентинович
  • Середа Владислав Александрович
  • Грищенко Александр Владимирович
  • Силевич Владимир Юрьевич
  • Сиденко Алексей Ильич
RU2531432C2
СТРУЙНО-РЕАКТИВНАЯ ТУРБИНА 2015
  • Королев Сергей Константинович
  • Овчаренко Андрей Юрьевич
  • Король Алексей Андреевич
RU2614946C2

Иллюстрации к изобретению RU 2 287 695 C2

Реферат патента 2006 года РЕАКТИВНАЯ ТУРБИНА

Изобретение относится к области энергомашиностроения, а именно к турбинным установкам, и может быть использовано в судовых и в других энергетических системах. Реактивная турбина содержит ротор, устройства подвода текучей среды с входным и выходным реактивным соплами, причем ось последнего перпендикулярна радиусу турбины. Ротор турбины содержит не менее четырех устройств подвода текучей среды к выходным реактивным соплам и, по меньшей мере, одно средство ионизации текучей среды. Каждое устройство подвода текучей среды к реактивному соплу имеет не менее двух сопел на одной оси, при этом, по меньшей мере, одно сопло жестко или с возможностью осевого перемещения соосно введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости, причем, не менее чем одна полость сообщена с устройствами подачи и отсоса текучей среды, средства ионизации размещены в полости одного из устройств подвода текучей среды, во всех полостях установлены датчики давления, а во входном и выходном реактивном соплах - датчики скорости, струя текучей среды из выходного реактивного сопла устройства подвода текучей среды направлена на входное сопло предыдущего устройства подвода текучей среды, при этом ротор снабжен цилиндрическим корпусом, в котором вблизи входного сопла каждого устройства подвода текучей среды размещены щели. Использование изобретения позволит упростить конструкцию турбины, уменьшить удельные массогабаритные и стоимостные характеристики. 1 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 287 695 C2

Реактивная турбина, состоящая из ротора, устройств подвода текучей среды, снабженных входным соплом и выходным реактивным соплом, расположенным в плоскости вращения турбины, причем его ось перпендикулярна радиусу турбины, отличающаяся тем, что ротор турбины содержит не менее четырех устройств подвода текучей среды к выходным реактивным соплам и, по меньшей мере, одно средство ионизации текучей среды, каждое устройство подвода текучей среды к реактивному соплу имеет не менее двух сопел на одной оси, при этом, по меньшей мере, одно сопло жестко или с возможностью осевого перемещения соосно введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости, причем не менее чем одна полость сообщена с устройствами подачи и отсоса текучей среды, средства ионизации размещены, по меньшей мере, в одной полости одного из устройств подвода текучей среды, во всех полостях установлены датчики давления, а во входном и выходном реактивном соплах - датчики скорости, струя текучей среды из выходного реактивного сопла устройства подвода текучей среды направлена на входное сопло предыдущего устройства подвода текучей среды, при этом ротор снабжен цилиндрическим корпусом, в котором вблизи входного сопла каждого устройства подвода текучей среды размещены щели.

Документы, цитированные в отчете о поиске Патент 2006 года RU2287695C2

РЕАКТИВНАЯ ТУРБИНА 2000
  • Мильман О.О.
  • Демичева Д.И.
  • Дахнович А.А.
  • Голдин А.С.
RU2193669C2
СПОСОБ СЖИГАНИЯ ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Дудышев В.Д.
RU2160414C2
Реактивная паровая турбина 1927
  • Чулков Н.П.
SU12230A1
Разрядная трубка 1927
  • Циклинский Н.Н.
SU7661A1
US 4430042 А, 07.02.1984
WO 9517590 А, 29.06.1995
US 2914920 А, 01.12.1959.

RU 2 287 695 C2

Авторы

Соловьев Александр Петрович

Турышев Борис Иванович

Кузякин Юрий Иванович

Даты

2006-11-20Публикация

2004-12-22Подача