Изобретение относится к области изоляции металлических поверхностей, преимущественно, металлических труб и оболочек электрических кабелей, как при их изготовлении, так и при ремонте, и может быть использовано для защиты магистральных трубопроводов и электрических кабелей от механических повреждений, от почвенной и атмосферной коррозии, а также для защиты нанесенных на металлическую поверхность изоляционных материалов.
Известна двухслойная термоусаживающаяся адгезионная лента (РСТ 94/17324, 1994). Основа состоит из двух соэкструдированных слоев, имеющих различное количество наполнителя, при этом наружный термопластичный слой основы имеет большее количество наполнителя (на 5-10%), что придает этому слою большую прочность. Внутренний термопластичный слой, в качестве которого применяют сополимер этилена с винилацетатом (далее - сэвилен), имеет меньшее количество наполнителя, он более аморфен, имеет поры, в которые затекает адгезионный состав при дальнейшей термоусадке материала.
Недостатком известного технического решения следует признать наличие сдвига адгезива по отношению к полиэтилену, что, вследствие значительного различия в коэффициентах линейного расширения полиэтилена и стали, ведет к трещинообразованию и преждевременному нарушению покрытия. Кроме того, используемый адгезив имеет высокую температуру размягчения и, следовательно, нанесения.
Наиболее близким аналогом заявленной ленты можно признать термоусаживающуюся адгезионную ленту "Донрад-2" (RU, патент 2088624, 1997), содержащую основу из экструдированного полиэтилена или сополимера этилена с винилацетатом, которую электронно-химически модифицировали пучком быстрых электронов до поглощенной дозы 0,15-0,35 МГр, а затем одноосно ориентировали, на которую нанесен битумно-каучуковый адгезив, содержащий каучук с полярными группами.
Недостатком известного технического решения следует признать наличие сдвига битумно-каучукового слоя по отношению к полиэтилену, что, вследствие значительного различия в коэффициентах линейного расширения полиэтилена и стали, ведет к трещинообразованию и преждевременному нарушению покрытия. Кроме того, битумно-каучуковый адгезив имеет высокую температуру размягчения и, следовательно, нанесения.
Техническая задача, решаемая посредством предложенной конструкции, состоит в разработке термоусаживающейся многослойной адгезионной ленты, обеспечивающей изоляцию металлической поверхности от окружающей среды.
Технический результат, получаемый при реализации предложенной термоусаживающейся многослойной адгезионной ленты, состоит в повышении адгезии в местах соединения ее внахлест при использовании в качестве оберточного материала, что приводит к повышению механической прочности соединения и исключению проникновения влаги и воздуха между слоями.
Для достижения указанного технического результата предложено использовать термоусаживающуюся многослойную адгезионную ленту, состоящую, по меньшей мере, из радиационно модернизированной полимерной основы на основе полиолефинов и адгезионного слоя, содержащего сополимер этилена и винилацетата, алюмосиликат, низкомолекулярный полимер на основе полиолефинов С3-С6 и добавку, выбранную из группы, содержащей антиоксидант, стабилизатор или агент липкости, при следующем соотношении компонентов (мас.%):
В предпочтительном варианте полимерная основа выполнена из полиэтилена или полипропилена. В некоторых случаях на адгезионный слой может быть дополнительно нанесен праймер, предпочтительно, кремнийорганический типа ЭДП. В качестве добавки применяют вещества, используемые в производстве полимерных материалов в качестве стабилизаторов, антиоксидантов, а также повышающих адгезию.
Пленку, выполненную на основе полиолефинов, на которую в дальнейшем наносят адгезив, для придания ей термоусадочных свойств и повышения механической прочности радиационно обрабатывают с дозой облучении примерно 18-20 Мрад. Кроме возникновения эффекта "памяти", обеспечивающего термоусадку пленки, радиационная обработка полимерной пленки увеличивает механическую прочность (12-15 МПа при >300%-ном удлинении) и значительно повышает его термохимическую стойкость. Полимерная пленка не растворяется в кипящем ксилоле и не плавится при температурах до 170°С. В технологическом процессе радиационной обработки полимерной ленты целесообразно применять ускорители электронов типа ЭЛВ-3, ЭЛВ-4. В этом случае возможно проводить двухстороннее облучение ленты, доводя коэффициент использования электронного пучка до 90%. А поскольку КПД самих ускорителей такого типа 80%, то КПД использования электроэнергии доходит до 70%.
В качестве низкомолекулярных сополимеров на основе полиолефинов C3-C6 используют, например, различные сополимеры пропилена и изобутилена с различным содержанием мономерных звеньев.
В дальнейшем сущность изобретения будет рассмотрена с использованием примеров реализации.
1. Полимерная лента выполнена из полиэтилена низкого давления, в частности, марки 273-83 и обработана с использованием ускорителя электронов ЭЛВ-3 с дозой облучения 18,1 Мрад. Наносимый клей-адгезив содержит тальк в качестве алюмосиликата, низкомолекулярный сополимер пропилена и бутилена, например, марки ЕМА, N-фенил-β-нафтиламин в качестве добавки - антиоксидант, сополимер этилена и винилацетата, например, марки 118-211 при следующем соотношении компонентов (мас.%):
Полученная термоусаживающая адгезионная лента при испытаниях показала следующие результаты:
а). Адгезия (Н/см) по ГОСТ 411 (при скорости отслоения 10 мм/мин):
б). Показатель текучести расплава (г/10 мин) (по ГОСТ 11645) при нагрузке 21,17 Н диаметре сопла 2,095 мм температуре 125°С после выдержки образца в течение 5 мин составил 29.
в). Температура расплава (полимеризации) 52°С.
г). Температура нанесения на твердую основу (сталь) 72°С.
д). Механическая прочность 12,4 МПа при >300%-ном удлинении.
2. Полимерная лента выполнена из полиэтилена высокого давления (ГОСТ 11262-80) и обработана с использованием ускорителя электронов ЭЛВ-4 с дозой облучения 19,3 Мрад. Наносимый клей-адгезив содержит цеолит в качестве алюмосиликата, низкомолекулярный сополимер пропилена и изобутилена, например, марки ЕМА, 2,6-ди-трет-бутил-4-метилфенол в качестве добавки - стабилизатор и сополимер этилена и винилацетата марки 11808 при следующем соотношении компонентов (мас.%):
Полученная термоусаживающая адгезионная лента при испытаниях показала следующие результаты:
а). Адгезия (Н/см) по ГОСТ 411 (при скорости отслоения 10 мм/мин):
б). Показатель текучести расплава (г/10 мин) (по ГОСТ 11645) при нагрузке 21,17 Н диаметре сопла 2,095 мм температуре 125°С после выдержки образца в течение 5 мин составил 30.
в). Температура расплава (полимеризации) 54°С.
г). Температура нанесения на твердую основу (сталь) 73°С.
д). Механическая прочность 14,3 МПа при >300%-ном удлинении.
3. Полимерная лента выполнена из полипропилена (фракции БИФ) и обработана с использованием ускорителя электронов ЭЛВ-4 с дозой облучения 19,8 Мрад. Наносимый клей-адгезив содержит биотит в качестве алюмосиликата, низкомолекулярный гомополимер изобутилена марки П-20, в качестве добавки - агент липкости - глицериновый эфир канифоли, модифицированной фумаровой кислотой, и сополимер этилена и винилацетата марки 11306-075 при следующем соотношении компонентов (мас.%):
Полученная термоусаживающая адгезионная лента при испытаниях показала следующие результаты:
а). Адгезия (Н/см) по ГОСТ 411 (при скорости отслоения 10 мм/мин):
б). Показатель текучести расплава (г/10 мин) (по ГОСТ 11645) при нагрузке 21,17 Н диаметре сопла 2,095 мм температуре 125°С после выдержки образца в течение 5 мин составил 28.
в). Температура расплава (полимеризации) 56°С.
г). Температура нанесения на твердую основу (сталь) 75°С.
д). Механическая прочность 13,1 МПа при >300%-ном удлинении.
4. Полимерная лента выполнена из полиэтилена низкого давления марки 273-83 и обработана с использованием ускорителя электронов ЭЛВ-3 с дозой облучения 15,8 Мрад. Наносимый клей-адгезив содержит тальк в качестве алюмосиликата, низкомолекулярный сополимер пропилена и изобутилена, например, марки ЕМА, N-фенил-β-нафтиламин в качестве добавки - антиоксидант и сополимер этилена и винилацетата типа 11306-075 при следующем соотношении компонентов (мас.%):
Полученная термоусаживающая адгезионная лента при испытаниях показала следующие результаты:
а). Адгезия (Н/см) по ГОСТ 411 (при скорости отслоения 10 мм/мин):
б). Показатель текучести расплава (г/10 мин) (по ГОСТ 11645) при нагрузке 21,17 Н диаметре сопла 2,095 мм температуре 125°С после выдержки образца в течение 5 мин составил 17.
в). Температура расплава (полимеризации) 87°С.
г). Температура нанесения на твердую основу (сталь) 98°С.
д). Механическую прочность 9,4 МПа при >300%-ном удлинении.
Данный состав не позволяет достичь указанного технического результата.
5. Полимерная лента выполнена из полиэтилена высокого давления (ГОСТ 11262-80) и обработана с использованием ускорителя электронов ЭЛВ-3 с дозой облучения 22,2 Мрад. Наносимый клей-адгезив содержит цеолит в качестве алюмосиликата, низкомолекулярный сополимер пропилена и изобутилена марки ЕМА, 2,6-ди-трет-бутил-4-метилфенол в качестве добавки - стабилизатор и сополимер этилена и винилацетата марки 11808 при следующем соотношении компонентов (мас.%):
Полученная термоусаживающая адгезионная лента при испытаниях показала следующие результаты:
а). Адгезия (Н/см) по ГОСТ 411 (при скорости отслоения 10 мм/мин):
б). Показатель текучести расплава (г/10 мин) (по ГОСТ 11645) при нагрузке 21,17 Н диаметре сопла 2,095 мм температуре 125°С после выдержки образца в течение 5 мин составил 17.
в). Температура расплава (полимеризации) 82°С.
г). Температура нанесения на твердую основу (сталь) 106°С.
д). Механическую прочность 7,9 МПа при >300%-ном удлинении.
Указанный состав не позволяет достичь указанного технического результата.
Экспериментально доказано, что указанный технический результат может быть достигнут только при использовании всех параметров ленты, указанных в формуле изобретения.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОУСАЖИВАЕМАЯ МНОГОСЛОЙНАЯ АДГЕЗИОННАЯ ЛЕНТА | 2008 |
|
RU2367840C1 |
ТЕРМОУСАЖИВАЮЩАЯСЯ МНОГОСЛОЙНАЯ АДГЕЗИОННАЯ ЛЕНТА | 2005 |
|
RU2278131C1 |
КЛЕЙ-РАСПЛАВ | 2005 |
|
RU2288932C1 |
КЛЕЙ-РАСПЛАВ | 2005 |
|
RU2278886C1 |
СПОСОБ НАНЕСЕНИЯ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКУЮ ПОВЕРХНОСТЬ | 2005 |
|
RU2277199C1 |
СПОСОБ НАНЕСЕНИЯ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКУЮ ПОВЕРХНОСТЬ | 2005 |
|
RU2289061C1 |
СПОСОБ НАНЕСЕНИЯ ИЗОЛЯЦИОННОЙ МАНЖЕТЫ НА СТЫК ТРУБОПРОВОДА | 2008 |
|
RU2397404C1 |
СПОСОБ ПРОТИВОКОРРОЗИОННОЙ ИЗОЛЯЦИИ СВАРНЫХ СТЫКОВ И МЕСТ РЕМОНТА ТРУБОПРОВОДА | 2002 |
|
RU2228940C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ТЕРМОУСАЖИВАЮЩЕГОСЯ АДГЕЗИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛИОЛЕФИНОВ "ДОНРАД-ЭКСТРА" | 1997 |
|
RU2124439C1 |
ТЕРМОУСАЖИВАЮЩАЯ МНОГОСЛОЙНАЯ АДГЕЗИОННАЯ ЛЕНТА | 2002 |
|
RU2228944C1 |
Описывается термоусаживающаяся многослойная адгезионная лента, которая может быть использована для изоляции металлических поверхностей, а также нанесенных на металлическую поверхность изоляционных материалов, преимущественно, металлических труб и оболочек электрических кабелей, как при их изготовлении, так и при ремонте. Лента состоит, по меньшей мере, из радиационно модернизированной полимерной основы на основе полиолефинов, добавки, выбранной из группы, содержащей антиоксидант, стабилизатор или агент липкости, и адгезионного слоя на основе сополимера этилена и винилацетата, содержащего алюмосиликат и низкомолекулярный полимер на основе полиолефинов С3-С6. Технический результат состоит в повышении адгезии в местах соединения ленты внахлест и механической прочности получаемого покрытия. 3 з.п. ф-лы.
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОУСАЖИВАЮЩЕГОСЯ АДГЕЗИОННОГО МАТЕРИАЛА "ДОНРАД-2" | 1996 |
|
RU2088624C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ТЕРМОУСАЖИВАЮЩЕГОСЯ АДГЕЗИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛИОЛЕФИНОВ "ДОНРАД-ЭКСТРА" | 1997 |
|
RU2124439C1 |
СПОСОБ ВОЗДЕЛЫВАНИЯ СОИ И СОРГО НА ЗЕРНО В СОВМЕСТНЫХ ПОСЕВАХ | 1992 |
|
RU2048720C1 |
Авторы
Даты
2006-12-10—Публикация
2005-04-28—Подача