ТОПЛИВНЫЙ БАК Российский патент 2007 года по МПК B60K15/03 B64G1/22 B64D37/06 

Описание патента на изобретение RU2293665C1

Изобретение относится к ракетно-космической технике, в частности к топливным бакам космических аппаратов (КА), работающим в условиях невесомости и переходе от невесомости к перегрузкам.

Из патентной литературы известен топливный бак, содержащий корпус с заборным и дренажным отверстиями и герметично закрепленную на стенках корпуса бака вогнутую в сторону заборного отверстия поперечную перегородку с выполненным в центральной ее части отверстием с проницаемым элементом (см., например, патент Англии №2109760, кл. B 64 G 1/40, F 02 K 9/50, оп. 06.06.83 г.).

В результате перегрузок, воздействующих на топливо в условиях невесомости, например существенных импульсов перегрузок, возникающих при работе системы ориентации, коррекции траектории полета, механических ударах (стыковка) и т.д., целостность топлива нарушается, и топливо, перемещаясь по всему объему топливного бака, перемешивается с газом наддува и к заборному отверстию подходит с пузырьками газа наддува, что вредно отражается на работе двигателей. По предотвращению вышеуказанного приоритет за способом ориентации топлива, основанном на действии сил поверхностного натяжения, использовании капиллярного эффекта.

Основной недостаток известного решения - топливо удерживается в зоне заборного отверстия и на проницаемых элементах в виде мелкоячеистых сит или сеток при воздействии знакопеременных ускорений только при отсутствии расхода из бака или при очень малых расходах, в небольшом диапазоне частот эффективной работы, а также низкая механическая прочность, значительный вес и грязеемкость. Например, сетки вообще плохо держат вибрацию вследствие того что не являются объемной структурой и не обладают разветвленной структурой легко контролируемого порового пространства.

Эффективная работа сетки возможна лишь на малых частотах (до 30 Гц).

Задачей настоящего изобретения является создание топливного бака с техническим результатом в виде повышения надежности работы, т.е. подачи топлива из топливного бака в двигательную установку без газовых включений, что позволяет обеспечить устойчивый многократный запуск двигательной установки из режима невесомости, снижение веса топливного бака, а также расширение арсенала технических средств данного назначения.

Решение данной задачи заключается в том, что в топливном баке, содержащем корпус с заборным и дренажным отверстиями и герметично закрепленную на стенках корпуса бака вогнутую в сторону заборного отверстия поперечную перегородку с выполненным в центральной ее части отверстием с проницаемым элементом, в соответствии с изобретением в перегородке в периферийной ее части выполнены дополнительные отверстия с установленными в них проницаемыми элементами в виде капиллярно-пористых элементов из пенометалла на основе коррозионно-стойкого металла или сплава, капиллярно-пористые элементы центрального отверстия размещены в цилиндрической обечайке, а последняя в нижней части снабжена сплошным основанием и выполнена у этого основания с боковыми окнами. При этом перегородка предпочтительно размещена в районе заборного отверстия.

Далее изобретение поясняется более подробно с использованием чертежей, где на фиг.1 изображен топливный бак с одной перегородкой, на фиг.2 показано заполнение бака примерно на 1/3 объема, когда смещение его центра масс при действии боковых возмущающих перегрузок существенно и опасно, а топливный бак показан в двух случаях: без перегородки и с перегородкой.

Топливный бак (фиг.1) содержит корпус 1 с заборным 2 и дренажным 3 отверстиями и хотя бы одну (хотя может быть и несколько) герметично крепящуюся к стенкам бака для предотвращения перетекания топлива в пристеночных областях перегородку 4 в форме усеченного конуса, делящую внутреннюю полость бака на отдельные секции 5 и 6. В центральной части перегородки 4 располагается пенометалл 7, заключенный в цилиндрическую обечайку 8. На периферийной части боковой стенки усеченного конуса (перегородки) выполнены отверстия 9 для периферийного дренажа газа наддува из-под перегородки, все-таки просачивающегося (возможно) под перегородку. Стенки усеченного конуса (перегородки) для уменьшения недозабора топлива выполнены практически сплошными, за исключением дренажных отверстий 9, и наклонными к центральной осевой части (выполнены вогнутыми в сторону нижнего днища или в сторону заборного отверстия). Нижнее основание 10 цилиндрической обечайки (основание, обращенное к заборному отверстию) выполнено также сплошным для защиты пенометалла от гидроудара и усталостных напряжений, возникающих под воздействием знакопеременных нагрузок по продольной оси космического аппарата. Отверстие 11 в цилиндрической обечайке 8 служит для проникновения топлива из полости 5 в капилляры пенометалла 7. Проникновение топлива в капилляры пенометалла 7 из полости 6 происходит через одно или несколько окон 12 обечайки 8. Поток топлива через окна 12 перпендикулярен продольной оси топливного бака. Отверстия на периферии конуса перегородки также закрыты пенометаллом.

Топливный бак с внутренней перегородкой работает следующим образом.

Перед работой двигательной установки на старте топливный бак содержит топливо (в нижней части бака) и газ наддува (в верхней части бака). При работе маршевого двигателя возникающая перегрузка создает гидростатическое давление топлива, намного превышающее капиллярное давление в капиллярах пенометалла 7, находящегося во внутренней перегородке 4 топливного бака. Пенометалл 7 не удерживает поток топлива, и топливо проникает из полости 5 в полость 6. В момент прекращения работы маршевого двигателя топливо, обладающее значительной кинетической энергией, под действием сил инерции из полости 6 стремится переместиться в полость 5. При возникающем вследствие этого гидроударе часть кинетической энергии топлива гасится на сплошной части перегородки и сплошном нижнем основании цилиндрической обечайки перегородки, а другая часть - на пенометалле, т.к. пенометалл, обладая специфической сетчато-ячеистой объемной структурой высокой капиллярной пористости, гасит значительную часть энергии топлива. Поэтому в полость бака 5 попадает незначительная часть топлива, не обладающего большой кинетической энергией.

В невесомости на топливный бак действуют малые перегрузки от работы двигателей стабилизации, ориентации и коррекции, которые вызывают изменение положения зеркала топлива, стремящегося установиться перпендикулярно действующим перегрузкам. Величины этих перегрузок на несколько порядков меньше, чем перегрузки по оси космического аппарата при работе маршевого двигателя. Гидростатическое давление, возникающее вследствие таких перегрузок, меньше капиллярного давления в капиллярах пенометалла 7, и проницаемая часть перегородки удерживает топливо, не давая зеркалу устанавливаться перпендикулярно действующим перегрузкам, тем самым сохраняя центр масс топливного бака на продольной оси космического аппарата и обеспечивая нормальный (без пузырьков газа) забор топлива на управляющие двигатели.

В качестве коррозионно-стойкого металла или сплава для изготовления пенометалла, принимая в расчет необходимость малого удельного веса, высокой жесткости и коррозионной стойкости, рекомендуется применять Al, нихром, коррозионно-стойкую сталь.

Таким образом, технический результат достигается в результате того, что:

- есть отличные капиллярные свойства, обусловленные однородностью строго регламентируемой сетчато-ячеистой трехмерной структуры порового пространства, ее объемностью, наличием канальной пористости, высокой пористостью (95%), которая обеспечивает малый удельный вес, малое гидравлическое сопротивление, большую емкость, повышенный коэффициент извилистости пор, возрастающий при пористости свыше 90%. Причем пористость равномерна по объему и легко контролируется;

- высокая коррозионная стойкость, высокая жесткость при малом удельном весе.

Обладая объемностью поровой структуры, сложной конфигурацией поровых каналов, как то: их сужение, расширение, влияющее на капиллярное давление, изменение направления и разветвление, наличие острых кромок, пенометалл разбивает поток топлива, возникающий при переходе от невесомости к перегрузкам на микропотоки. При этом происходит значительная диссипация энергии движущегося жидкого компонента. Большая плотность поверхности капиллярных каналов, пенометалла (благодаря 95% объема пустот) положительно влияет на диссипацию энергии топлива. Кинетическая энергия топлива расходуется на преодоление капиллярных сил, возникающих в капиллярах пенометалла. В результате этого снижается гидродинамическое воздействие топлива на стенки бака, уменьшая смещение центра масс топливного бака с продольной оси космического аппарата. В условиях невесомости пенометалличеекая часть перегородки бака, за счет капиллярного эффекта, не позволяет топливу перемещаться по всему объему топливного бака и смещать центр масс с продольной оси космического аппарата.

Похожие патенты RU2293665C1

название год авторы номер документа
ТОПЛИВНЫЙ БАК ЖИДКОСТНЫХ ДВИГАТЕЛЬНЫХ УСТАНОВОК РАКЕТ БОЛЬШОЙ ГРУЗОПОДЪЕМНОСТИ 2020
  • Владимиров Александр Владимирович
  • Кузнецов Сергей Викторович
RU2738247C1
ТОПЛИВНЫЙ БАК ЛЕТАТЕЛЬНОГО АППАРАТА 2012
  • Никитин Владимир Иванович
  • Куранов Евгений Геннадьевич
  • Реш Георгий Фридрихович
RU2497724C1
Устройство отбора топлива из баков космических аппаратов в условиях невесомости 2015
  • Марков Александр Вадимович
RU2609546C1
УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ЖИДКОСТИ И ГАЗА В УСЛОВИЯХ НЕВЕСОМОСТИ 2000
  • Гришин В.М.
  • Подобедов Г.Г.
  • Перфильев Л.А.
  • Ракитин А.М.
  • Рябкин А.М.
RU2165871C1
Устройство отбора топлива из баков космических аппаратов в условиях невесомости 2015
  • Марков Александр Вадимович
RU2610718C1
ТОПЛИВНЫЙ БАК И ЕГО ЗАБОРНОЕ УСТРОЙСТВО 2016
  • Александров Лев Григорьевич
  • Богданов Александр Александрович
  • Большаков Владимир Александрович
  • Константинов Сергей Борисович
  • Корольков Анатолий Владимирович
  • Кузьмин Олег Анатольевич
  • Мартынов Максим Борисович
  • Новиков Михаил Юрьевич
  • Новиков Юрий Михайлович
  • Сапожников Владимир Борисович
  • Макаров Вячеслав Петрович
RU2657137C2
Устройство для моделирования гидродинамических процессов в топливном баке космического аппарата 2018
  • Марков Александр Вадимович
  • Александров Лев Григорьевич
  • Макаров Вячеслав Петрович
  • Новиков Юрий Михайлович
  • Сапожников Владимир Борисович
RU2703745C1
КАПИЛЛЯРНАЯ СИСТЕМА ХРАНЕНИЯ И ОТБОРА ЖИДКОСТИ В РАКЕТНЫЙ ДВИГАТЕЛЬ КОСМИЧЕСКОГО ОБЪЕКТА (ВАРИАНТЫ) 2014
  • Смоленцев Александр Алексеевич
  • Тупицын Николай Николаевич
  • Туманин Евгений Николаевич
  • Белов Алексей Александрович
  • Рожков Михаил Викторович
RU2584211C2
ТОПЛИВНЫЙ БАК ЛЕТАТЕЛЬНОГО АППАРАТА 2009
  • Дмитриев Альберт Иванович
  • Карпов Сергей Иванович
  • Кликодуев Николай Григорьевич
  • Кучеренко Юрий Стефанович
  • Мальков Анатолий Федорович
  • Мищенко Анатолий Петрович
  • Щеглов Валерий Анатольевич
RU2390472C1
УСТРОЙСТВО ЗАБОРА ТОПЛИВА ИЗ БАКА ЛЕТАТЕЛЬНОГО АППАРАТА 2017
  • Дергачев Александр Анатольевич
  • Иванов Михаил Юрьевич
  • Кабанов Владимир Анатольевич
  • Кузнецов Кирилл Николаевич
  • Куранов Евгений Геннадьевич
  • Новиков Андрей Евгеньевич
  • Реш Георгий Фридрихович
  • Богданов Александр Александрович
  • Большаков Владимир Александрович
  • Новиков Михаил Юрьевич
  • Новиков Юрий Михайлович
RU2666004C1

Иллюстрации к изобретению RU 2 293 665 C1

Реферат патента 2007 года ТОПЛИВНЫЙ БАК

Изобретение относится к топливным бакам космических аппаратов, работающим в условиях невесомости и при переходе от невесомости к перегрузкам. Топливный бак содержит корпус с заборным и дренажным отверстиями и герметично закрепленную на стенках корпуса поперечную перегородку. Перегородка вогнута в сторону заборного отверстия, а в ее центральной части выполнено отверстие с проницаемым элементом. Согласно изобретению, в периферийной части упомянутой перегородки выполнены дополнительные отверстия с установленными в них проницаемыми элементами. Все проницаемые элементы выполнены в виде капиллярно-пористых элементов из пенометалла на основе коррозионно-стойкого металла или сплава. Капиллярно-пористый элемент центрального отверстия размещен в цилиндрической обечайке. Последняя в нижней части снабжена сплошным основанием, обращенным к заборному отверстию, и выполнена у этого основания с боковыми окнами. При этом перегородка может быть размещена в районе заборного отверстия. Изобретение позволяет обеспечить устойчивый многократный запуск двигательной установки космического аппарата в условиях невесомости и снизить вес топливного бака. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 293 665 C1

1. Топливный бак, содержащий корпус с заборным и дренажным отверстиями и герметично закрепленную на стенках корпуса бака вогнутую в сторону заборного отверстия поперечную перегородку с выполненным в центральной ее части отверстием с проницаемым элементом, отличающийся тем, что в периферийной части перегородки выполнены дополнительные отверстия с установленными в них проницаемыми элементами, все проницаемые элементы выполнены в виде капиллярно-пористых элементов из пенометалла на основе коррозионно-стойкого металла или сплава, капиллярно-пористый элемент центрального отверстия размещен в цилиндрической обечайке, а последняя в нижней части снабжена сплошным основанием, обращенным к заборному отверстию, и выполнена у этого основания с боковыми окнами.2. Топливный бак по п.1, отличающийся тем, что перегородка размещена в районе заборного отверстия.

Документы, цитированные в отчете о поиске Патент 2007 года RU2293665C1

GB 20109760 А, 08.06.1983
Пенный огнетушитель 1926
  • Э. Вальдшмидт
SU7088A1
JP 9020299 A, 21.01.1997
US 4768541 A, 06.09.1988
ПОЛУХИН Д.А., ОРЕЩЕНКО В.М., МОРОЗОВ В.А
Отработка пневмогидросистем двигательных установок ракет-носителей и космических аппаратов
- М.: Машиностроение, 1987, с.25, рис.1.10
Конструкция и проектирование космических летательных аппаратов.

RU 2 293 665 C1

Авторы

Владимиров Александр Владимирович

Даты

2007-02-20Публикация

2005-06-08Подача