Изобретение относится к области пищевой технологии, а именно к способам защиты липидов, масел, жиров от окисления и окислительной деструкции, и может быть использовано в пищевой, косметической и химико-фармацевтической промышленности для получения стабильных липидосодержащих пищевых добавок (нутрицевтиков), лечебно-косметических средств и лекарственных препаратов.
Для торможения процессов окисления применяют антиоксиданты (ингибиторы окисления), которые находят все более широкое применение для предотвращения окислительных превращений липидов и содержащих их препаратов in vitro, а также in vivo в комплексной терапии широкого круга заболеваний /Герчук М.П. Антиокислители в пищевой промышленности.//Журн. Всесоюз. хим. общества им. Д.И.Менделеева. - 1960. - №.4. - С.395-402. Авакумов В.М., Ковлер М.А., Кругликова-Львова Р.П. Лекарственные средства метаболической терапии на основе витаминов и ферментов (Обзор).//Вопросы мед. химии. - 1992. - Т.38. - №4. - С.14-21. Дурнев А.Д., Середенин С.В. Антиоксиданты как средства защиты генетического аппарата.//Хим.-фарм. журн. - 1990. - №2. - С.92-100/. Таким образом, антиоксиданты, присутствующие в лекарственном или косметическом препарате, являются не только действующим началом этих средств, но могут значительно тормозить их окисление в процессе длительного хранения, способствуя сохранению в нативном состоянии легкоокисляемых биологически активных компонентов.
Рекомендуемые курсы назначения нутрицевтиков, пероральных лекарственных средств, липидных препаратов с антиоксидантами достаточно продолжительны (до 30 дней), что определяет особую тщательность в подборе ингибиторов окисления /Дегтярев И.А., Заиков Г.Е. Ионол. Распределение в организме и биологическое действие.//Хим.-фарм. журн. - 1985. - №10. - С.1160-1168. Ленинжер А. Основы биохимии. - М. - Мир. - 1985. - Т.1. - С.385/.
Во всем мире ведется целенаправленный скрининг (отбор) полифункциональных стабилизаторов, лекарств антиоксидантного действия, синергических смесей. Использование синергических смесей позволяет получать высокоэффективные композиции и при этом снижать количество антиоксиданта.
Известен состав для стабилизации липидов, включающий следующие компоненты, мас.%:
добавляемых в концентрации 0,4-5,2% от массы липидов /патент №2077558 RU, МПК6 С 11 В 5/00, опубликованный 20.07.1996 г./.
Указанный состав тормозит процесс окисления липидов за счет антиоксидантного действия ингибиторов природного происхождения α-токоферола (6-гидрокси-2,5,7,8-тетраметил-2-фитилхромана, витамина Е), бензафлавина (аналога витамина В2) и лецитина (яичного фосфатидилхолина). В составе указанной композиции бензафлавин и лецитин проявляют по отношению к α-токоферолу или α-токоферола ацетату синергическое действие. Однако практическое применение указанной синергической смеси затруднено в силу многокомпонентности ее состава, отсутствия промышленного производства бензафлавина, дороговизны препаратов, получаемых в экспериментальном производстве.
В связи с этим целесообразен поиск высокоэффективных синергических смесей, способных значительно тормозить окисление жиров, масел, липидов, применяемых в качестве основ фармпрепаратов, пищевых добавок, разнообразной косметической продукции, но более простых по составу и доступных для практического применения.
Задачей заявляемого изобретения является экономия использования дорогостоящих соединений, достижение ингибирующего эффекта меньшим количеством антиоксиданта.
Техническим результатом изобретения является упрощение состава и повышение его ингибирующего эффекта при наименьших концентрациях антиоксидантов.
Указанный технический результат достигается тем, что в составе для стабилизации липидов, включающем α-токоферол, особенностью является то, что вместо бензафлавина и лецитина используют N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид при следующих соотношениях компонентов в смеси, мас.%:
добавляемых в концентрации 0,04-0,28% от массы липидов.
Предлагаемое соединение N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид было синтезировано в Институте биохимической физики (ИБХФ) им. Н.М.Эмануэля РАН на основе фенозана (метилокса) (β-3,5-дитрет.бутил-4-гидроксифенилпропионовой кислоты) с целью расширения ассортимента нетоксичных биологически активных ингибиторов окисления. Соединения не обладают местным и общетоксическим действием, не оказывают влияния на эмбриогенез и развитие потомства, проявляют антиацетилхолинэстеразную активность, регулируют рост клеток растений /Молочкина Е.М., Озерова И.Б., Брагинская Ф.И., Зорина О.М., Шишкина Л.Н. Антиоксидантные (АО) и антиацетилхолинэстеразные (антиАХЭ) свойства гибридных соединений группы Ихфанов.//В сб.: Биоантиоксидант. Москва. - 1998. - С.153-154. Богатыренко Т.Н., Бурлакова Е.Б., Конрадов А.А. Активность антиоксидантов как регуляторов роста клеток растений и ее связь с их физико-химическими константами.//В сб.: Биоантиоксидант. Москва. - 1998. - С.26-27/.
Предложенное производное фенозана, в отличие от α-Токоферола, обладают бифункциональными свойствами - антиокислительным действием и наличием в молекуле положительно заряженного атома азота, позволяющего удерживать ее на поверхности клеточных мембран с фиксацией на определенном месте за счет липовильного фрагмента (поплавковый эффект). Подобная структура обеспечивает адресную посылку антиоксидантов и создает возможность использования их для подавления патологических процессов в клетке организма, при которых нарушаются проницаемость клеточных мембран и интенсифицируются процессы перекисного окисления липидов.
На основе такого подхода новое производное фенозана может применяться для лечения заболеваний, вызываемых вирусом иммунодефицита, цитомегаловирусом, а также при воспалительных заболеваниях, вызванных грамположительными бактериями (стафилококки, менингококки) и др.
Предлагаемое соединение N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид проявляет активность в реакции с пероксильными радикалами и обладает дополнительно способностью непосредственно взаимодействовать с гидропероксидами, разрушая их без образования свободных радикалов, что не наблюдается в присутствии α-токоферола. Разрушение гидропероксидов под влиянием изучаемого соединения, в свою очередь, является причиной выигрыша в периодах индукции и обеспечения высокой эффективности соединения по сравнению с прототипом.
Для предлагаемого синтетического антиоксиданта имеет место положительная корреляционная связь между концентрацией и величиной ингибирующего эффекта, что не наблюдается для α-токоферола, указанная зависимость имеет экстремальный характер и при высоких концентрациях антиоксидантное действие α-токоферола сменяется на проантиоксидантное.
Минимальная токсичность и высокие антиоксидантные свойства позволяют широко использовать N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид в составе смеси с α-токоферолом в косметической и химико-фармацевтической промышленности для получения стабильных липидосодержащих лечебно-косметических средств и лекарственных препаратов.
Эффективность стабилизаторов оценивалась несколькими независимыми методами /Сторожок Н.М. Межмолекулярные взаимодействия компонентов природных липидов в процессе окисления. Дис. ... д-ра хим. наук. М.: Институт биохимической физики им. Н.М.Эмануэля РАН, 1996. С.360. Цепалов В.Ф., Харитонова А.А., Гладышев Г.П. и др. Определение констант скорости и коэффициентов ингибирования фенолов-антиоксидантов с помощью модельной цепной реакции.//Кинетика и катализ. - 1977. - Т.18, - вып.5. - С.1261-1267/:
- изучалась кинетика поглощения кислорода при инициированном окислении липидных субстратов различного происхождения в присутствии предлагаемого состава и прототипа;
- тестировалась кинетика накопления первичных продуктов окисления - гидропероксидов методом йодометрического титрования (ПЧ) при аутоокислении липидов при повышенных температурах (60±0,2°С).
Изучение кинетики поглощения кислорода проводилось манометрическим методом в установках типа Варбурга при инициированном окислении липидов в присутствии инициатора азобисизобутиронитрила (АИБН) в концентрации 3 мМ при температуре 60±0,2°С. Контролем служили образцы липидов без добавок антиоксидантов.
В качестве субстратов окисления использовали природные липиды (сиговых рыб) и метиловый эфир олеиновой кислоты (метилолеат). Опытная серия рыбных липидов была наработана на Салехардском рыбоконсервном заводе по методу /Сторожок Н.М., Кутузова И.В. Состав для стабилизации липидов. Патент №2077552, RU, опубл. в БИ №11. - 1997 г./. Изучение жирнокислотного состава липидов позволило установить присутствие значительного количества полиненасыщенных жирных кислот (до 37%), в том числе пента- и гексаенов до 12% и 2% соответственно /Ушкалова В.Н., Артамонова Н.А., Сторожок Н.М., Горяев М.И. Жирнокислотный состав общих и нейтральных липидов сиговых Обского бассейна.//Химия природ. соединен. - 1981. - №5. - С.555-558/.
Эффективность индивидуальных компонентов и их комбинаций исследовалась в широком диапазоне концентраций и соотношений компонентов:
добавляемых в концентрации 0,02-1,29% от массы липидов.
В присутствии определенной добавки ингибиторов окисления α-токоферола, N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, смеси α-токоферола и N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, а также прототипа записывалась кинетика окисления с использованием вышеописанных методов. На основании полученных данных строились кинетические кривые поглощения кислорода (О2, мм3) либо накопления пероксидов (г I2/100 г липида).
Из кинетических кривых определялись периоды индукции (τ), за которые принимали:
- время (в мин), за которое процесс инициированного окисления липидов достигал максимальной скорости (τинд).
- время (в часах) накопления пероксидов, количественно соответствующих значению ПЧ 0,1% I2.
Эффективность совместного ингибирующего действия смеси количественно характеризовали абсолютным значением разности (Δτ) периодов индукции окисления метилолеата (МО) в присутствии композиции антиоксидантов (АО) (τ∑) и простой суммы индивидуальных компонентов (∑τi) (аддитивное действие) (Δτ=τ∑-∑τi), либо выражали в относительных единицах - (Δτ/∑τi)×100%. Выполнение неравенства τΣ>∑τi свидетельствовало о проявлении синергизма в совместном действии компонентов, а τ∑<∑τi - об эффекте антагонизма.
Критерием антиоксидантного действия служили начальная (Wo2нач×10-7, M×c-1) и максимальная (Wo2max×10-7, M×c-1) скорости процесса окисления в присутствии и в отсутствии антиоксиданта. Эффективность стабилизации окисления определяли также по величине Wo2max(МО)/Wo2max(МО+АО), количественно характеризующей степень уменьшения скорости поглощения кислорода в присутствии метилолеата (МО) и метилолеата с добавками антиоксидантов (МО+АО).
Было установлено, что зависимость изменения периодов индукции для индивидуального α-токоферола носит экстремальный характер. Диапазон эффективных концентраций расположен в области (0,25-8,00) мМ, что соответствует (0,03-1,08)% от массы липидов, максимум указанной зависимости определялся при концентрации 2,5 мМ (0,34% от массы липидов). Зависимости изменения величины периодов индукции от концентрации N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида в системе окисления носили линейный характер, указанное соединение в смеси с α-токоферолом проявляло синергическое действие, превосходящее по своему ингибирующему действию прототип.
Изучение ингибирующего действия смесей α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом с постоянными концентрациями α-токоферола показало, что зависимость периодов индукции от концентрации N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида также носит экстремальный характер с максимумом в области 4×10-4 моль/л (0,05% от массы липидов). Диапазон эффективных концентраций соответствовал (1,0-6,0)×10-4 моль/л, что составляет (0,01-0,08)% от массы липидов. Диапазон эффективных концентраций смесей α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом с постоянными концентрациями N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида соответствовал (2,5-15,0)×10-4 моль/л, что составляет (0,03-0,20)% от массы липидов.
В связи с этим с целью отбора наиболее эффективных синергических смесей более подробно изучались двухкомпонентные составы, включающие α-токоферол с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом, при этом концентрации каждого из компонентов смеси выбирались из указанной области наибольшей эффективности смесей.
Диапазоны изменения концентрации каждого из компонентов, составляющих в целом наиболее высокоэффективные смеси, представлены следующими значениями, мас.%:
добавляемых в концентрации 0,04-0,28% от массы липидов.
Сущность изобретения иллюстрируется следующими примерами.
ПРИМЕР 1
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0044 г (0,04%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0034 г α-токоферола, 0,0010 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,03% и 0,01% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
ПРИМЕР 2
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0064 г (0,06%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0034 г α-токоферола, 0,0030 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,03% и 0,03% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
ПРИМЕР 3
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0078 г (0,08%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0068 г α-токоферола, 0,0010 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,07% и 0,01% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
ПРИМЕР 4
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0110 г (0,11%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0100 г α-токоферола, 0,0010 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,10% и 0,01% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
ПРИМЕР 5
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0150 г (0,15%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0140 г α-токоферола, 0,0010 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,14% и 0,01% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
β'-(3,5-дитрет.бутил-4-гидроксифенил)
ПРИМЕР 6
Берут 10 г (точная навеска) эфиров ненасыщенных высших жирных кислот, например метилолеата или метиллинолеата, и добавляют 0,0170 г (0,17%) смеси α-токоферола с N,N,N-триметиламиноэтиловым эфиром β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодидом. Стабилизирующая комбинация содержит 0,0140 г α-токоферола, 0,0030 г N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, что составляет соответственно 0,14% и 0,03% от массы липидов. При этом соотношение компонентов стабилизирующей смеси следующее, мас.%:
Эффективность ингибирующего действия смесей указанных выше веществ оценивали на основании данных кинетики поглощения кислорода, получаемых с использованием манометрического метода, подробно изложенного в описании изобретения.
Полученные результаты приведены в табл.1. Из данных табл.1 видно, что все рекомендуемые сочетания ингибиторов окисления превосходят по величине эффективности прототип. Наибольшую эффективность по сравнению с прототипом проявляет смесь (пример 6), включающая 83,3% α-токоферола и 16,7% N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, добавляемая в концентрации 0,14% и 0,03% соответственно от массы липидов, максимально достигаемый ингибирующий эффект составляет 1280 мин, соотношение компонентов смеси 5:1, при этом эффект синергизма составляет 58,0%.
Было установлено, что эффективность синергизма при совместном использовании α-токоферола и N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида в разных субстратах составляет от (20-65)%, тогда как для прототипа эффективность смесей изменялась в пределах (16-20)% (табл.1).
Из сравнения ингибирующего действия исследуемых смесей видно, что абсолютная величина периодов индукции смеси, включающей 83,3% α-токоферола и 16,7% N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида, добавляемых в количестве 0,14% и 0,03% от массы липидов соответственно, выше при окислении метилолеата (1280 мин), чем при окислении рыбных липидов (280 мин). Эти данные объясняются более высокой степенью ненасыщенности входящих в состав рыбных липидов высших жирных кислот, а следовательно, и более высокой их окисляемостью. Однако сравнение для указанной смеси величин Δτ/∑τi, в %, полученных при окислении разных субстратов показывает, что этот показатель выше при ингибировании рыбных липидов нежели метилолеата (соответственно 64,7% и 58,0%). Эти данные объясняются более высокой степенью ненасыщенности входящих в состав рыбных липидов высших жирных кислот /Ушкалова В.Н., Артамонова Н.А., Сторожок Н.М., Горяев М.И. Жирнокислотный состав общих и нейтральных липидов сиговых Обского бассейна. // Химия природ. соединен. - 1981. - №5. - С.555-558/, следовательно, и более высокой их окисляемостью. Введение рекомендуемой концентрации исследуемых соединений воссоздает антиоксидантную систему и обеспечивает эффективную защиту липидов от окисления. Более высокая ингибирующая способность указанной выше смеси по сравнению с прототипом была доказана несколькими независимыми методами (приведенными выше) (табл.1, 2, 3).
Установлен наиболее эффективный диапазон концентраций антиоксидантов, мас.%:
добавляемых в концентрации 0,04-0,28% от массы липидов.
При изучении кинетики накопления гидропероксидов было показано, что в опытах с концентрацией 83,3% α-токоферола и 16,7% N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида в концентрации 0,14% и 0,03% от массы липидов соответственно, процент разрушения гидропероксидов составляет 55,0%, что не наблюдается в присутствии прототипа (табл.3).
Причинно-следственная связь между существенными признаками изобретения и достижением технического результата следующая. Полученные впервые эффекты ингибирования синергической смесью α-токоферола и N,N,N-триметиламиноэтилового эфира β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодида могут быть объяснены, исходя из представлений о механизме антиоксидантного действия. Установлено, что оба компонента смеси воздействуют на сложный многостадийный процесс окисления по различным механизмам.
Так, в соответствии с литературными данными, α-токоферол проявляет чрезвычайно высокую активность только в реакции с пероксильными радикалами (RO2 •), ведущими окисление. Константа скорости реакции α-токоферола с RO2 • (реакции 7 согласно классической схемы) составляет 3,60×106 М-1×с-1. /Сторожок Н.М., Храпова Н.Г., Бурлакова Е.Б. Исследование межмолекулярных взаимодействий компонентов природных липидов в процессе окисления. // Химическая кинетика. - 1995, - т.14. - №11. - С.29-46. Бурлакова Е.Б., Крашаков С.А., Храпова Н.Г. Роль токоферола в пероксидном окислении липидов биомембран. // Биологические мембраны. - 1998, - т.15. - №2. - С.137-168/.
Таким образом, соединение N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид проявляет активность в реакции с пероксильными радикалами с константой скорости реакции К7=0,59×104 М-1×с-1, снижает скорость процесса окисления липидов в смеси с α-токоферолом в 2-7 раз, а также дополнительно снижает уровень гидропероксидов, образующихся в процессе окисления липидов, на 55,0% (табл.3). Разрушение гидропероксидов под влиянием смеси заявляемого соединения с α-токоферолом, в свою очередь, является причиной выигрыша в периодах индукции и обеспечения высокой эффективности.
Предлагаемый состав, включающий α-токоферол и N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил) пропановой кислоты иодид, достигает эффекта ингибирования окисления липидов при низких концентрациях компонентов смеси по сравнению с прототипом. Сочетание в одной композиции ингибиторов, действующих на разные элементарные реакции сложного окислительного процесса, а также присутствие эффекта синергизма антиоксидантов позволяет увеличить ингибирующую способность смеси и эффективно тормозить окисление полиненасыщенных субстратов.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2315087C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2312131C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2005 |
|
RU2284348C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2005 |
|
RU2288258C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2005 |
|
RU2284349C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2308478C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2308477C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2308479C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2005 |
|
RU2290430C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2006 |
|
RU2318014C1 |
Изобретение относится к области пищевой промышленности, а именно к способам защиты липидов, масел, жиров от окисления и окислительной деструкции. Состав для стабилизации липидов включает α-токоферол и синергист антиоксиданта. При этом в качестве синергиста антиоксиданта используют N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет.бутил-4-гидроксифенил)пропановой кислоты иодид. Все компоненты взяты в определенном соотношении. Состав добавляют в концентрации 0,04-0,28% от массы липидов. Изобретение позволяет снизить скорость процесса окисления липидов в 2-7 раза, а также дополнительно снизить уровень гидропероксидов, образующихся в процессе окисления липидов, на 55,0%. 3 табл.
Состав для стабилизации липидов, включающий α-токоферол и синергист антиоксиданта, отличающийся тем, что в качестве синергиста антиоксиданта используют N,N,N-триметиламиноэтиловый эфир β'-(3,5-дитрет-бутил-4-гидрокси-фенил)пропановой кислоты иодид при следующих соотношениях компонентов в смеси, мас.%:
добавляемых в концентрации 0,04-0,28% от массы липидов.
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 1995 |
|
RU2077558C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 1999 |
|
RU2157829C1 |
СОСТАВ ДЛЯ СТАБИЛИЗАЦИИ ЛИПИДОВ | 2000 |
|
RU2181757C2 |
ЭМАНУЭЛЬ Н.М., ЛЯСКОВСКАЯ Ю.Н | |||
«Торможение процессов окисления жиров», М., Пищепромиздат,1961, стр.236-282. |
Авторы
Даты
2007-03-10—Публикация
2005-09-08—Подача