ТЕПЛОВОЙ ГИДРАВЛИЧЕСКИЙ ДВИГАТЕЛЬ Российский патент 2007 года по МПК F03G7/06 

Описание патента на изобретение RU2295650C2

Изобретение относится к области преобразования тепловой энергии в механическую и может быть использовано в качестве двигателя.

Известно техническое решение [1], осуществляющее преобразование тепловой энергии в механическую путем попеременного нагрева и охлаждения камер, заполненных термочувствительным рабочим телом, расположенных на периферии полого ротора, заполненного жидкостью. Перераспределение массы жидкости в роторе при изменении объема камер приводит к созданию весового дисбаланса с попеременным перемещением камер в зоны их нагрева и охлаждения за счет названного дисбаланса. Недостатком является малая эффективность преобразования энергии, т.к. дисбаланс незначителен.

Известно техническое решение [2], в котором тепловая энергия преобразуется в механическую с помощью термочувствительного рабочего тела. В качестве термочувствительного рабочего тела применена жидкость, постоянно пребывающая в жидкой фазе в течение всего рабочего цикла. Расширение рабочего тела осуществляется импульсно. Работа расширения рабочего тела преобразуется в кинетическую энергию инерционного элемента. Кинетическая энергия преобразуется в механическую энергию исполнительного механизма. Недостатком является прерывистый, импульсный характер работы и низкий КПД преобразования тепловой энергии в механическую.

Цель изобретения - повышение КПД, расширение области применения. Предлагаемое техническое решение основано на непрерывном тепловом расширении жидкого рабочего тела.

На фиг.1 представлена схема распределения фаз теплового гидравлического двигателя с однократным расширением жидкого рабочего тела. На фиг.2 представлена конструктивная схема теплового гидравлического двигателя, содержащего пластинчатую гидравлическую машину однократного действия с подводом тепловой энергии к рабочим камерам в фазе теплового объемного расширения. На фиг.3 представлена конструктивная схема теплового гидравлического двигателя, содержащего поршневую машину (механизм преобразования энергии расширения жидкого рабочего тела в механическую энергию вращения рабочего вала не показан).

Тепловой гидравлический двигатель содержит жидкое рабочее тело с коэффициентом теплового объемного расширения большим, чем у стенок рабочих камер, источник (источники) внешней тепловой энергии (8), питающую магистраль (7), сливную магистраль (5), холодильник (6), предохранительные клапаны (клапан) (9), трубопроводы (трубопровод) (10), соединяющие рабочие камеры (11) через предохранительные клапаны (9) со сливной магистралью (5), гидравлическую машину объемного вытеснения, имеющую рабочие камеры (камеру) (11), заполненные жидким рабочим телом с непрерывно изменяющимися объемами в течение оборота рабочего вала, имеющую распределительное устройство любой конструктивной схемы, обеспечивающее фазы (фазу) наполнения (3), в которых рабочие камеры (камера) (11) подключены к питающей магистрали (7), фазу (фазы) теплового объемного расширения (4), фазы (фазу) вытеснения (1), в которых рабочие камеры (камера) (11) подключены к сливной магистрали (5), перевальные фазы (фазу) (2), в которых рабочие камеры (11) имеют минимальные объемы и отключены от обеих магистралей (5 и 7), имеющую механизм преобразования энергии расширения жидкого рабочего тела в механическую энергию вращения рабочего вала, при этом внешняя тепловая энергия подводится к рабочим камерам (11), холодильник (6) включен в гидравлическое соединение сливной (5) и питающей магистралей (7) Цикл работы двигателя включает фазу (фазы) наполнения (3), фазу (фазы) теплового объемного расширения (4), фазу (фазы) вытеснения (1) и перевальную фазу (фазы) (2).

Тепловой гидравлический двигатель работает следующим образом. Тепловая энергия от источника внешней тепловой энергии (8) подводится к рабочим камерам (11). В фазе наполнения (3) рабочие камеры (11) подключаются к питающей магистрали (7) и частично наполняются жидким рабочим телом. В фазе теплового объемного расширения (4) рабочие камеры отключаются от питающей магистрали (7) и дальнейшее увеличение объема рабочих камер (11) до максимума происходит за счет расширения жидкого рабочего тела от подводимой тепловой энергии - происходит преобразование тепловой энергии в механическую. По достижении максимального объема рабочие камеры (11) в фазе вытеснения (1) подключаются к сливной магистрали (5). Для защиты рабочих камер от разрушения при максимальном объеме предусмотрены предохранительные клапаны (клапан) (9) с трубопроводами (10), соединяющие рабочие камеры (11) со сливной магистралью (5). Жидкое рабочее тело вытесняется по сливной магистрали (5) в холодильник (6). В холодильнике (6) жидкое рабочее тело охлаждается и по питающей магистрали (7) возвращается в фазе наполнения (3) в рабочие камеры (11). Перевальная фаза (2) соответствует минимальным объемам рабочих камер (11). В перевальных фазах (2) обе магистрали отключены от рабочих камер. Рабочее тело нагревается в рабочих камерах и охлаждается в холодильнике. Тепловой гидравлический двигатель всасывает жидкое рабочее тело как насос и вытесняет как гидродвигатель.

Для экономии тепловой энергии в конструктивных схемах, в которых рабочие камеры движутся по кругу вместе с рабочим валом, возможен подвод тепловой энергии к рабочим камерам в фазе теплового объемного расширения (4). Предлагаемое техническое решение может быть реализовано в различных конструктивных схемах тепловых гидравлических двигателей, например: тепловой гидравлический двигатель аксиально-поршневой, тепловой гидравлический двигатель радиально-поршневой, пластинчатый тепловой гидравлический двигатель, тепловой гидравлический двигатель роликового типа, тепловой гидравлический двигатель с бочкообразными лопатками, героторный тепловой гидравлический двигатель и т.д.

В качестве рабочего тела для тепловых гидравлических двигателей могут применяться жидкости, используемые в системах гидроприводов с коэффициентом теплового объемного расширения большим, чем у материала стенок рабочих камер.

Технический результат:

1. Непрерывное преобразование тепловой энергии в механическую энергию и как следствие больший коэффициент полезного действия по сравнению с известными решениями.

2. Крутящий момент двигателя во многих случаях позволит отказаться от понижающих передач.

3. Независимость от стационарного источника тепловой энергии.

Источники информации

1. Авторское свид. СССР 1100422, кл. F 03 G 7/06, 30.06.84.

2. RU 2189496, 20.09.2002.

Похожие патенты RU2295650C2

название год авторы номер документа
СПОСОБ РАБОТЫ ТЕПЛОВОГО ДВИГАТЕЛЯ И ТЕПЛОВОЙ ДВИГАТЕЛЬ 2013
  • Медведев Вадим Владимирович
RU2575958C2
ТЕПЛОВАЯ МАШИНА "ИЛО", РАБОТАЮЩАЯ ПО ЗАМКНУТОМУ ЦИКЛУ СТИРЛИНГА 2006
  • Воронин Александр Васильевич
RU2326256C2
ТЕПЛОНАСОСНАЯ УСТАНОВКА "БОЖИЙ ДАР" 1986
  • Раковский Владимир Федорович
RU2067268C1
ТЕПЛОНАСОСНАЯ УСТАНОВКА "КАТЮША" 1986
  • Раковский Владимир Федорович
RU2047822C1
СПОСОБ РАБОТЫ ТЕПЛОВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ МАЗЕИНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Мазеин И.С.
RU2263799C2
Двухтактный гибридный двигатель с преобразованием в работу отходящей теплоты ДВС и дожиганием выхлопных газов (варианты) 2020
  • Холзаков Сергей Алексеевич
RU2745467C1
ТЕПЛОВОЙ ДВИГАТЕЛЬ С ВНЕШНИМ ПОДВОДОМ ТЕПЛОТЫ 1999
  • Конюхов Д.Л.
RU2149275C1
ДВИГАТЕЛЬ СТИРЛИНГА С ГЕРМЕТИЧНЫМИ КАМЕРАМИ 2002
  • Палецких В.М.
RU2224129C2
ДВИГАТЕЛЬ ВНЕШНЕГО СГОРАНИЯ 2012
  • Линейцев Дмитрий Александрович
RU2509218C2
АКСИАЛЬНО-ПОРШНЕВОЙ НАСОС И ГИДРАВЛИЧЕСКАЯ ТРАНСМИССИЯ ТРАНСПОРТНОГО СРЕДСТВА С АКСИАЛЬНО-ПОРШНЕВЫМ НАСОСОМ 2000
  • Смирнов И.С.
RU2172428C1

Иллюстрации к изобретению RU 2 295 650 C2

Реферат патента 2007 года ТЕПЛОВОЙ ГИДРАВЛИЧЕСКИЙ ДВИГАТЕЛЬ

Изобретение относится к энергетике. Тепловой гидравлический двигатель содержит источник внешней тепловой энергии, рабочие камеры, неподвижно расположенные относительно оси рабочего вала, заполненные жидким рабочим телом с непрерывно изменяющимися объемами в течение оборота рабочего вала, механизм преобразования энергии расширения жидкого рабочего тела в механическую энергию вращения рабочего вала, распределительное устройство, питающую магистраль, сливную магистраль, холодильник, предохранительные клапаны, трубопроводы, соединяющие рабочие камеры через предохранительные клапаны со сливной магистралью. Изобретение позволяет повысить коэффициент полезного действия. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 295 650 C2

1. Тепловой гидравлический двигатель, содержащий источник (источники) внешней тепловой энергии, рабочие камеры (камеру), неподвижно расположенные относительно оси рабочего вала, заполненные жидким рабочим телом с непрерывно изменяющимися объемами в течение оборота рабочего вала, механизм преобразования энергии расширения жидкого рабочего тела в механическую энергию вращения рабочего вала, распределительное устройство, обеспечивающее фазы (фазу) наполнения, в которых рабочие камеры (камера) подключены к питающей магистрали, фазы (фазу) вытеснения, в которых рабочие камеры (камера) подключены к сливной магистрали, перевальные фазы (фазу), в которых рабочие камеры имеют минимальные объемы и отключены от обеих магистралей, жидкое рабочее тело с коэффициентом теплового объемного расширения, большим, чем у стенок рабочих камер, питающую магистраль, сливную магистраль, холодильник, предохранительные клапаны (клапан), трубопроводы (трубопровод), соединяющие рабочие камеры через предохранительные клапаны со сливной магистралью, отличающийся тем, что распределительное устройство обеспечивает фазы (фазу) теплового объемного расширения, в которых происходит преобразование тепловой энергии в механическую, холодильник включен в гидравлическое соединение питающей и сливной магистралей, внешняя тепловая энергия постоянно подводится к рабочим камерам.2. Тепловой гидравлический двигатель по п.1, отличающийся тем, что рабочие камеры расположены по кругу с возможностью кругового движения, согласованного с вращением рабочего вала, внешняя тепловая энергия подводится к рабочим камерам в фазе теплового объемного расширения.3. Тепловой гидравлический двигатель по п.2, отличающийся тем, что внешняя тепловая энергия подводится к рабочим камерам постоянно.

Документы, цитированные в отчете о поиске Патент 2007 года RU2295650C2

СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В МЕХАНИЧЕСКУЮ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Романовский В.Ф.
RU2189496C1
Тепловой двигатель с жидким или газообразным рабочим веществом 1934
  • Богословский В.С.
SU49655A1
US 3867815 A, 25.02.1975
US 4432203 A, 21.02.1984
DE 4022632 A1, 31.01.1991
Способ преобразования тепловой энергии в механическую и устройство для его осуществления 1981
  • Коваленко Эдуард Петрович
SU1100422A1

RU 2 295 650 C2

Авторы

Сергеенко Дмитрий Евгеньевич

Даты

2007-03-20Публикация

2004-11-09Подача