Изобретение относится к особым устройствам для создания реактивной тяги и может быть использовано при разработке электрореактивных двигателей, используемых в космическом пространстве и в плотных слоях атмосферы.
Известны электрореактивные двигатели (RU 2166667 С1, 10.05.2001; RU 2172865 С2, 10.04.2001; Корлисс У.Р. Ракетные двигатели для космических полетов. М.: Издательство иностранной литературы, 1962, с.349-353, 365-375; Фаворский О.Н., Фишгойт В.В., Янтовский Е.И. Основы теории космических электрореактивных двигательных установок. М.: Высшая школа, 1970, с.139-141).
Однако известные электрореактивные двигатели имеют сложную конструкцию и высокое потребление энергии.
Наиболее близким к заявленному изобретению является техническое решение того же назначения по патенту RU 2243408 С2, 06.08.98, МПК 7 - F03Н 5/00. Из RU 2243408 известен электрореактивный двигатель, включающий, как и заявленный, источник электрической энергии постоянного тока, источник электронов и приемник электронов.
Известный электрореактивный двигатель имеет сложную конструкцию вследствие большого количества взаимосвязанных рабочих элементов, а также предназначен для работы только в космическом пространстве.
Задача настоящего изобретения заключается в расширении арсенала технических средств определенного назначения, а именно электрореактивных двигателей, предназначенных как для космических летательных аппаратов, так и для других транспортных средств (например, самолетов), работающих в плотных слоях атмосферы. Кроме того, попутно решалась задача в упрощении конструкции и повышении экономичности двигателя.
Указанный технический результат достигается тем, что электрореактивный двигатель, содержащий источник электрической энергии постоянного тока, источник электронов и приемник электронов, согласно изобретению, снабжен электронной системой управления, электрически связанной с источником электрической энергии. Источник электронов подключен проводником к потенциалу отрицательной полярности источника электрической энергии через электронную систему управления. Приемник электронов подключен к потенциалу положительной полярности источника электрической энергии также через электронную систему управления и установлен на расстоянии от источника электронов, многократно превышающем длину свободного пробега электронов в газообразном рабочем теле. Источник электронов и приемник электронов выполнены в форме токопроводящих пластин, причем поверхность источника электронов, обращенная к приемнику электронов, имеет многоигольчатую структуру. В пластине приемника электронов выполнены отверстия с образованием сетчатой структуры.
Кроме того, для повышения экономичности при применении двигателя в плотных слоях атмосферы в качестве газообразного рабочего тела может быть использован воздух.
Целесообразно при применении двигателя в космическом пространстве в качестве газообразного рабочего тела использовать ксенон.
Предусмотрено, что для увеличения тяги двигателя путем увеличения количества молекул газа, выходящих из двигателя в окружающую среду, острия много игольчатой поверхности источника электронов могут быть выполнены из алмазоподобного материала.
С целью предотвращения лавинного пробоя между электродами рекомендуется, чтобы величина работы выхода электронов находилась в пределах от 1,5 до 4,5 электронвольт.
Рекомендуется для упрощения конструкции двигателя, чтобы токопроводящие пластины источника и приемника электронов были выполнены в форме дисков.
На чертеже приведена принципиальная схема электрореактивного двигателя.
Электрореактивный двигатель имеет цилиндрический корпус (1) с выходным устройством (соплом) (2) для выхода реактивной струи в окружающее пространство. В корпусе установлен блок питания (3), включающий источник электрической энергии постоянного тока и электронную систему управления, электрически связанную с источником электрической энергии. Электронная система управления состоит из преобразовательных, распределительных, регулирующих, блокирующих и защитных устройств, выполненных в виде отдельных модулей. В корпусе также установлена емкость (4) с газообразным рабочим телом и газоразрядная камера (5). Газоразрядная камера состоит из двух электродов, а именно из источника электронов (6) и приемника (он же нейтрализатор) электронов (7), заключенных в кожух (8), выполненный из непроводящего электрический ток материала. Источник электронов (6) подключен проводником (9) к потенциалу отрицательной полярности источника электрической энергии через электронную систему управления. Приемник электронов (7) подключен проводником (10) к потенциалу положительной полярности источника электрической энергии также через электронную систему управления и установлен на расстоянии от источника электронов, многократно превышающем длину свободного пробега электронов в газообразном рабочем теле. Такое расположение электродов обеспечивает режим работы двигателя без возникновения лавинного пробоя между ними, а следовательно, экономичный режим. Источник электронов снабжен каналом (11) для подвода газообразного рабочего тела, например ксенона. Использование в качестве газообразного рабочего тела ксенона обусловлено его высоким молекулярным весом, равным 130,2. Вход канала подсоединен к емкости (4) или может сообщаться с атмосферой по дополнительному каналу (12) в случае использования в качестве рабочего тела воздуха, особенно при работе двигателя в плотных слоях атмосферы. Выход канала (11) подсоединен к межэлектродному пространству (промежутку) у источника электронов (6). Источник электронов и приемник электронов выполнены в форме токопроводящих пластин. Для увеличения тяги двигателя (повышения экономичности) путем увеличения количества молекул газа, выходящих из двигателя в окружающую среду, поверхность источника электронов, обращенная к приемнику электронов, имеет многоигольчатую структуру (13). В пластине приемника электронов выполнены отверстия (14) с образованием сетчатой или сотовой структуры для входа и выхода реактивного потока молекул. Предусмотрено, что для повышения количества заряженных молекул в газоразрядной камере (5) и, как следствие, повышение экономичности двигателя острия многоигольчатой поверхности источника электронов могут быть выполнены из алмазоподобного материала (α-СН). Выполнение источника электронов с многоигольчатой структурой и из специального материала существенно снижает затраты энергии на выход электронов, что и приводит к повышению КПД двигателя. С целью предотвращения лавинного пробоя между электродами (следовательно, для обеспечения более экономичного режима работы двигателя), рекомендуется, чтобы величина работы выхода электронов находилась в пределах от 1,5 до 4,5 электронвольт. Для упрощения конструкции двигателя токопроводящие пластины источника и приемника электронов могут быть выполнены в форме дисков.
Электрореактивный двигатель работает следующим образом.
Электронная система управления обеспечивает генерацию напряжения между электродами и стабилизацию режима работы двигателя без возникновения лавинного процесса. Электронная система управления генерирует управляющее напряжение, положительный потенциал которого подается на пластину приемника электронов (7) с помощью проводника (10), а отрицательный потенциал - на источник электронов (6) с помощью проводника (9). Величина напряжения выбирается достаточной для создания напряженности электрического поля, при которой электроны инжектируются на молекулы газообразного рабочего тела, находящиеся в межэлектродном пространстве в газоразрядной камере (5), при этом молекулы газа заряжаются отрицательно. Под воздействием электрического поля в межэлектродном пространстве на отрицательно заряженные молекулы газа действует сила электростатического взаимодействия (сила Кулона). Под воздействием силы Кулона отрицательно заряженные молекулы начинают двигаться к приемнику электронов (7). В процессе направленного движения молекулы ускоряются и рассеиваются на нейтральных молекулах газа, сообщая им импульс движения. В результате в межэлектродном пространстве возникает поток заряженных и нейтральных молекул газа, направленный к приемнику электронов (7), в котором имеются отверстия для прохода газового потока. Отрицательно заряженные молекулы, подойдя к приемнику электронов, отдают электроны и становятся электронейтральными. Далее уже нейтральные молекулы, имеющие скорость, направленную по нормали к поверхности приемника электронов и находящиеся в области отверстий, проходят через отверстия в окружающее пространство, создавая при этом реактивную тягу.
При работе электрореактивного двигателя в плотных слоях атмосферы, для повышения экономичности, в качестве газообразного рабочего тела используется воздух, который по дополнительному каналу (12) и каналу (11) поступает из окружающей среды в газоразрядную камеру (5). При работе двигателя в космическом пространстве (или когда в качестве рабочего тела используется иной газ, например ксенон) газообразное рабочее тело поступает в газоразрядную камеру из емкости (4) по каналу (11), при этом дополнительный канал (12) перекрывается.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОРЕАКТИВНОЙ ТЯГИ ДЛЯ ПЕРЕДВИЖЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА | 2006 |
|
RU2333385C2 |
ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ НА НАНОЧАСТИЦАХ МЕТАЛЛОВ ИЛИ МЕТАЛЛОИДОВ | 2013 |
|
RU2534762C1 |
Прямоточный релятивистский двигатель | 2020 |
|
RU2776324C1 |
ПОЛЫЙ КАТОД | 2017 |
|
RU2662795C1 |
Ионный ракетный двигатель космического аппарата | 2018 |
|
RU2682962C1 |
СПОСОБ ПИТАНИЯ И УПРАВЛЕНИЯ СИСТЕМОЙ КОРРЕКЦИИ КОСМИЧЕСКОГО АППАРАТА | 2013 |
|
RU2549318C2 |
ЭЛЕКТРОРЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 2023 |
|
RU2818410C1 |
СПОСОБ ГЕНЕРИРОВАНИЯ ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2159976C2 |
ПОЛЫЙ КАТОД | 2017 |
|
RU2663241C1 |
Мембранный ионно-плазменный ракетный двигатель космического аппарата | 2018 |
|
RU2709231C1 |
Двигатель предназначен для создания реактивной тяги в электрореактивных двигателях, используемых в космическом пространстве и в плотных слоях атмосферы. Двигатель оснащен электронной системой управления, электрически связанной с источником электрической энергии; источник электронов подключен к потенциалу отрицательной полярности источника энергии через систему управления, а приемник электронов подключен к потенциалу положительной полярности источника энергии через систему управления и установлен на расстоянии от источника электронов, многократно превышающем длину свободного пробега электронов в газообразном рабочем теле. Источник и приемник электронов выполнены в форме токопроводящих пластин, причем поверхность источника электронов, обращенная к приемнику электронов, имеет многоигольчатую структуру. В пластине приемника электронов выполнены отверстия с образованием сетчатой или сотовой структуры. Изобретение позволяет расширить арсенал электрореактивных двигателей, упростить конструкцию и повысить экономичность двигателя. 7 з.п. ф-лы, 1 ил.
RU 2004102750 А, 10.07.2005 | |||
ПОДОГРЕВАТЕЛЬ ГАЗА | 2002 |
|
RU2225964C1 |
ТЕХНОЛОГИЧЕСКИЙ НАГРЕВАТЕЛЬ | 1999 |
|
RU2168121C1 |
ТЕХНОЛОГИЧЕСКИЙ НАГРЕВАТЕЛЬ | 1998 |
|
RU2140045C1 |
US 4448348 A, 15.05.1984. |
Авторы
Даты
2007-04-10—Публикация
2005-10-17—Подача