Изобретение относится к металлургии, а именно, к литейным износостойким чугунам, используемым для изготовления деталей, работающих в условиях интенсивного абразивного и ударно-абразивного изнашивания при различном рН среды и высоких температур и может быть использовано для изготовления различных отливок, например корпусов, защитных дисков, рабочих колес песковых, грунтовых и шламовых насосов, колосников спекательных тележек и грохотов агломерационных машин, роликов и волок проволочных станов и др.
Известен износостойкий чугун, содержащий углерод, кремний, марганец, хром, церий, кальций, медь и железо при следующем соотношении компонентов, мас.%:
(см. патент РФ №2102517, С 22 С 37/06).
Недостаткоми известного чугуна являются низкая износостойкость, невысокаие жаростойкость и коррозионная стойкость. При этом низкая износостойкость чугуна возникает в результате повышенного содержания углерода, кремния, которые снижают критическое содержание хрома в чугуне, что приводит к образованию крупных заэвтектических карбидов М23С6 и обеднению металлической основы хромом и углеродом. Кроме того, высокое содержание марганца в чугуне приводит к увеличению доли остаточного аустенита и снижению доли карбидов за счет перераспределения углерода между аустенитом и эвтектическим расплавом, что также снижает износостойкость чугуна. Кремний в указанном колличестве уменьшает растворимость хрома в кремнистом феррите и образует с хромом химическое соединение CrSi, что положительно действует на процессы графитизации, а следовательно, снижает коррозионную стойкость чугуна. Содержание церия в указанном количестве приводит к образованию неметаллических включений с высокой плотностью (оксидов, сульфидов, оксисульфидов и др.) трудноудалимых из расплава, что снижает жаростойкость, коррозионную стойкость и износостойкость чугуна.
Наиболее близким аналогом к заявляемому чугуну является износокоррозионностойкий чугун, содержащий углерод, кремний, марганец, хром, церий и железо при следующем соотношении компонентов, мас. %:
(см. патент РФ №2042729, 22С 37/06).
Недостатками известного чугуна являются невысокая износостойкость, жаростойкость, коррозионностойкость за счет того, что указанное содержание хрома и кремния приводит к образованию крупных заэвтектических карбидов типа М23C6 и обеднению металлической основы хромом и углеродом. Кроме того, образуемые в чугуне кристаллические оксисульфиды церия снижают жаростойкость и коррозионную стойкость за счет увеличения межзеренной коррозии при высоких температурах.
В основу изобретения поставлена задача разработать состав чугуна, который обладал бы одновременно комплексом высоких технических свойств: износостойкостью, коррозионной стойкостью и жаростойкостью.
Поставленная задача решается тем, что известный чугун, содержащий углерод, кремний, марганец, хром и железо, согласно изобретению дополнительно содержит бор, титан, ниобий при следующем соотношении компонентов, мас.%:
Известно, что для повышения износо-, жаро-, коррозионной стойкости использование титана в качестве раскислителя и модификатора, обеспечивающего устранение эффекта транскритализации, повышения дисперсности структуры, а также в качестве легирующего элемента для образования как собственных, так и комплексных карбидов (см. Рахманкулов М.М., Паращенко В.М. Технология литья жаропрочных сплавов. - М.: Интермет инжиниринг, 2000. С.77-83).
Известно использование в чугуне бора в качестве модифицирующий и микролегирующей добавки для повышения прокаливаемости, измельчения зерна, увеличения твердости и микротвердости (см. Колокольцев В.М., Мулявко Н.М., Вдовин К.Н., Синицкий Е.В. Абразивная износостойкость литых металлов и сплавов. - Магнитогорск: МГТУ, 2004. С.134-140).
Известно использование ниобия для образования в а- или y-железе как самостоятельных, так и сложных карбидов, обеспечивающих повышение износо-, жаро-, коррозионной стойкости (см. Рахманкулов М.М., Паращенко В.М. Технология литья жаропрочных сплавов. - М.: Интермет инжиниринг, 2000. С.88-91).
В заявляемом чугуне титан (Ti), бор (В) и ниобий (Nb) проявляют вышеуказанные известные технические свойства.
Однако наравне с известными техническими свойствами Ti, В, Nb в заявляемом чугуне при взаимодействии с углеродом и хромом проявляют новое техническое свойство, заключающееся в образовании компактных, стабильностойких высокотвердых комплексных карбидов типа Cr(Ti,Nb,B)xCy с высокой дисперсностью. Это происходит следующим образом.
В заявляемом чугуне бор при кристаллизации чугуна, взаимодействуя с карбидообразующими элементами, образует сложные комплексные карбобориды, одновременно увеличивая дисперсность комплексных карбидов путем ограничения их роста. В свою очередь титан при кристаллизации расплава образует многочисленные карбиды с размерами значительно меньшими размеров карбидов хрома и находящимися в виде изолированных включений, что приводит к увеличению концентрации хрома в твердом растворе. Одновременно с этим указанные карбиды, являясь центрами кристаллизации, приводят к увеличению дисперсности структурных составляющих чугуна. Все это способствует повышению жаро-, износо-, коррозионных свойств чугуна.
Ниобий, обладая ограниченной растворимостью в твердом растворе, образует собственные стабильные карбиды и одновременно участвует в образовании комплексных стабильностойких карбидов путем вывода регулируемого количества углерода и хрома из пересыщенного твердого раствора, что препятствует образованию карбидной фазы типа М23С6 и обеднению металлической основы хромом. Кроме того, ниобий повышает твердость матрицы и твердость карбидов типа М7С3 за счет растворения в них.
Таким образом, совместное взаимодействие титана, бора и ниобия с углеродом и хромом в количественном соотношении ((Cr·C)2·Ti·B·Nb)/C=0,5-1,8 позволяет получить компактные, стабильностойкие высокотвердые комплексные карбиды типа Cr(TiNbB)xCy, имеющие значительные силы молекулярно-механического сцепления за счет соотношения компонентов и их распределения в структуре чугуна.
Это позволяет значительно увеличить износо- жаро- корозионностойкость заявляемого чугуна и обеспечить стабильность комплекса указанных свойств в условиях работы деталей при высоких температурах в агрессивных средах.
На основании вышеизложенного можно сделать вывод, что для специалиста заявляемый чугун не следует явным образом из известного уровня техники, а следовательно, соответствует условию патентоспособности "изобретательский уровень".
Введение в чугун углерода (С) в заявляемом количестве обеспечивает образование карбидов типа М7С3, которые способствуют повышению его износостойкости.
При введении в чугун углерода в количестве менее 2,2 мас.% резко падает объемная доля карбидов, что снижает износостойкость чугуна, а в количестве более 2,5 мас.% - приводит к обеднению металлической основы хромом, снижает ростоустойчивость и окалиностойкость чугуна, а следовательно, и жаростойкость.
Кремний (Si) в заявляемом количестве, являясь технологической добавкой, распределяется при кристаллизации между аустенитом и эвтектическим расплавом, обеспечивает достаточную жидкотекучесть чугуна.
Содержание кремния в количестве менее 0,2 мас.% снижает жидкотекучесть чугуна, что ограничит его применение в литейном производстве, а в количестве более 0,5 мас.% - увеличивает верхнюю критическую скорость отбеливания чугуна и снижает устойчивость аустенитной структуры, что приводит к снижению износостойкости.
Марганец (Mn) в заявляемом количестве также является технологической добавкой. Содержание марганца в количестве менее 0,2 мас.% снизит его стабилизирующие воздействие на аустенит, а в количестве больше 0,5 мас.% - понизит количество карбидов, что снизит износостойкость.
Хром (Cr) в заявляемом количестве предназначен для образования комплексных карбидов типа (Fe,Cr)7С3 и повышения сопротивляемости окислению металлической основы чугуна, что способствует повышению износо- коррозионно- и жаростойкости чугуна.
При содержании хрома менее 20 мас.% в структуре чугуна образуются наряду с карбидами (Fe,Cr)7C3 карбиды (Fe,Cr)3С, уменьшается содержание хрома в металлической основе, появляются продукты распада аустенита, что приводит к снижению жаро-, износостойкости чугуна. При содержании хрома более 28 мас.% в структуре чугуна увеличивается общая доля крупных первичных карбидов, появляются крупные и хрупкие карбиды типа (Fe,Cr)23С6, что приводит к снижению жаро-, износостойких свойств.
Бор (В) в заявляемом количестве предназначен для образования сложных комплексных карбоборидов и одновременного увеличения дисперсности комплексных карбидов путем ограничения их роста, что приводит к повышению износо- коррозионно- и жаростойкости чугуна.
При содержании бора в заявляемом чугуне менее 0,01 мас.% резко падает количество комплексных карбоборидов, не достигается нужная дисперсность комплексных карбидов и других структурных составляющих чугуна, а при содержании более 0,03 мас.% снижается эффект модифицирования за счет образования легкоплавкой боридной эвтектики, присутствие которой значительно понизит весь комплекс заявляемых свойств чугуна.
Титан (Ti) в заявляемом количестве предназначен для образования как собственных, так и комплексных карбидов, а также к увеличению дисперсности структурных составляющих чугуна, что приводит к повышению износо- коррозионно- и жаростойкости.
При содержании титана менее 0,2 мас.% его влияние будет заключаться только в модифицирующим эффекте, при этом количество собственных и комплексных карбидов будет незначительно, а при содержании более 0,5 мас.% ослабнут силы молекулярного сцепления, что приведет к дестабилизации образованных высокотвердых включений и их распаду. Кроме того, увеличится газонасыщенность и загрязненность расплава. Все это приведет к снижению жаро-, износостойких свойств.
Ниобий (Nb) в заявляемом количестве предназначен для образования как собственных, так и комплексных карбидов, а также для повышения твердости матрицы и твердости карбидов типа М7С3, что приводит к повышению износо- коррозионно- и жаростойкости.
При содержании ниобия менее 0,3 мас.% его влияние на стабилизацию образованных совместно с титаном и бором высокотвердых включений снизится, что приведет к их распаду при высоких температурах и снижению всего комплекса заявляемых свойств.
Вводить в чугун ниобий более 0,6 мас.% нецелесообразно из-за значительного увеличения себестоимости заявляемого чугуна.
Железо является основой заявляемого чугуна.
Для обоснования преимуществ заявляемого чугуна по сравнению с прототипом в лабораторных условиях были проведены испытания шести составов чугунов: с заявляемым соотношением компонентов (состав №1-№3, табл.1), с соотношением компонентов, выходящих за заявляемое минимальное значение (состав №4, табл.1), с соотношением компонентов, выходящим за максимальное значение (состав №5, табл.1) и чугуна, взятого за прототип (состав №6, табл.1). Заявляемый чугун выплавляли по общепринятой технологии в индукционной тигельной печи емкостью 60 кг с основной футеровкой.
Титан, хром, ниобий, бор вводили в чугун в виде ферротитана ФТи 32, феррохрома ФХ 650, феррониобия ФБн 37, ферробора ФБр 20.
Износостойкость (Ки) определяли согласно ГОСТ 23.208-79. Износостойкость исследуемых образцов оценивали путем сравнения их износа с износом эталонного образца. В качестве эталона использовали сталь 45.
Жаростойкость оценивали по ГОСТ 6130-71 после выдержки в печи в течение заданного времени (100 ч) при постоянной температуре (800°С) глубинной проникновения коррозии по методу увеличению массы образца (мм).
Определение стойкости к агрессивным средам (коррозийной стойкости) определяли согласно ГОСТ4732-81.
Результаты испытаний образцов, изготовленных из заявляемого чугуна (составы №1-3), и чугуна, взятого за прототип (состав №6), приведены в таблице 2.
Полученные результаты позволяют сделать вывод о том, что заявляемый чугун по сравнению с прототипом имеет в среднем:
- на 10,5-34,2% выше износостойкость;
- на 36-70% выше жаростойкость;
- на 5-42% выше коррозионностойкость.
Использовать составы чугунов с содержанием компонентов, выходящих за заявляемые пределы (состав №4 и 5), нецелесообразно, так как в этих случаях у чугунов наблюдается снижение вышеуказанных свойств.
Содержание компонентов, мас.%
состава
название | год | авторы | номер документа |
---|---|---|---|
ЧУГУН | 2006 |
|
RU2319780C1 |
ЧУГУН | 2004 |
|
RU2272086C1 |
Белый жароизносостойкий чугун | 2022 |
|
RU2777733C1 |
ЧУГУН | 2008 |
|
RU2374351C1 |
ЧУГУН | 2004 |
|
RU2262546C1 |
БЕЛЫЙ ИЗНОСОСТОЙКИЙ ЧУГУН | 2017 |
|
RU2640367C1 |
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ | 2015 |
|
RU2619547C1 |
Чугун | 1985 |
|
SU1285044A1 |
СТАЛЬ | 2012 |
|
RU2514901C2 |
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ ЖАРОПРОЧНЫХ ЖАРОСТОЙКИХ СПЛАВОВ | 2008 |
|
RU2373039C1 |
Изобретение относится к металлургии, в частности к литейным износостойким чугунам. Может использоваться для изготовления корпусов, защитных дисков, колосников спекательных тележек и грохотов агломерационных машин, роликов и волок проволочных станов и др. Чугун содержит, мас.%: углерод 2,2-2,6; кремний 0,2-0,5; марганец 0,2-0,5; хром 20,0-28,0; бор 0,01-0,03; титан 0,2-0,5; ниобий 0,3-0,6; железо - остальное. Техническим результатом является повышение износостойкости, коррозионной стойкости и жаростойкости. 2 табл.
Чугун, содержащий углерод, кремний, марганец, хром и железо, отличающийся тем, что он дополнительно содержит бор, титан и ниобий при следующем соотношении компонентов, мас.%:
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
ЧУГУН | 1992 |
|
RU2012651C1 |
SU 1513936 A, 27.01.2000 | |||
ИЗНОСОСТОЙКИЙ ЧУГУН | 0 |
|
SU378489A1 |
Преобразователь перемещения в код | 1987 |
|
SU1439738A1 |
СПОСОБ ПОИСКА НЕФТЕГАЗОНОСНЫХ ТЕРРИТОРИЙ | 1999 |
|
RU2167438C2 |
Авторы
Даты
2007-05-27—Публикация
2005-09-12—Подача