СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА В ГЕЛЕВЫХ ОКСИГИДРАТНЫХ СИСТЕМАХ Российский патент 2007 года по МПК H01M6/22 H01M8/20 

Описание патента на изобретение RU2300161C1

Изобретение относится к коллоидно-химическим процессам, а именно к способу получения токов, которые могут быть использованы для создания батарей или суперконденсаторов.

Известны химические источники тока, в которых энергия окислительно-восстановительного процесса переходит в электрическую (Шпак И.Е. Химические источники тока. Саратов, 2003. - 95 с.). Известны тепловые химические источники тока, в которых тепловая энергия переходит в электрическую (Купов Ф.И. и др. Тепловые химические источники тока. Ростов-на-Дону, 1989-174 с.). Они широко используются в технике.

Наиболее близким к предлагаемому изобретению являлся известный способ получения электрического тока с использованием гелей оксигидрата циркония, включающий щелочное осаждение геля оксигидрата металла 10%-ным раствором аммиака из раствора соли металла, помещение свежеприготовленного геля оксигидрата металла в полую трубку, на концах которой закреплены круглые платиновые электроды, с которых снимается электроток на аккумулирующей установке (Сухарев Ю.И., Кострюкова А.М. Вариации тока самоорганизации гелевых оксигидратных систем циркония как отражение температуры термотропного перехода // Известия Челябинского научного центра УрО РАН. - 2005. - Вып.3. - С.45-49). Данный способ позволяет принципиально новым способом получить электрический ток, он не имеет аналогов, хотя основывается на известных в коллоидной химии электрокинетических явлениях (Духин С.С. Электропроводимость и электрокинетические свойства дисперсных систем. Киев, 1975. - 246 с.).

Недостатком способа является небольшая величина токов, с его помощью можно получить малые пульсационные токи величиной до 2 мкА, а частота токовых выплесков незначительна.

Задачей настоящего изобретения является получение электрического тока с помощью химического источника на основе гелей оксигидратов металлов больших токовых величин с большей частотой.

Указанная задача решается тем, что в предложенном способе получения электрического тока в гелевых оксигидратных системах, включающем получение геля оксигидрата металла путем щелочного осаждения из раствора соли металла, помещение свежеприготовленного геля оксигидрата металла в полую трубку с закрепленными на концах платиновыми электродами, с которых снимают ток на аккумулирующую установку, согласно изобретению осаждение геля осуществляют 2%-ным раствором аммиака в реакторе объемом не менее 5 л, при этом введение раствора аммиака осуществляют в начальный момент со скоростью 0,025 мл/с, а после помутнения смеси и ее перемешивания скорость увеличивают до 0,04...0,05 мл/с.

Как показали исследования, проведенные заявителем, при получении геля оксигидрата металла путем медленного щелочного осаждения 2%-ным раствором аммиака из раствора соли металла в реакторе объемом 5 л происходит неожиданное значительное увеличение значений тока до 10 мкА. Причинами возникновения токовых пульсаций (выбросов) является самоорганизация неравновесного оксигидратного геля во времени. Удлиненные гелевые структурные единицы в поле самопроизвольно созданного электрического потенциала совершают линейные перемещательные и вращательные движения. В условиях избытка в дисперсионной среде ионов возникает поляризация ДЭС, привязанного к определенной структуре удлиненных фрагментов геля. Эта структура самопроизвольно конформационно видоизменяется, что приводит к постоянному разрыву (уничтожению) прежних поляризованных ДЭС и формированию новых. Высвобождающиеся при этом свободные ионы образуют движущийся ионный поток в поле самопроизвольно возникшей разности потенциалов на платиновых электродах. Этот процесс представляется практически мгновенным, так как определяется туннельным переходом протонов на границе "коллоидная частица - дисперсионная среда" (а также "коллоидная частица - поверхность платинового электрода") при синхронизированном сближении повернутых гелевых диполей с поляризованными ДЭС.

Впервые получен способ получения электрического тока в оксигидратных системах величиной до 10 мкА. Особенностью способа является осуществление процесса осаждения геля низкоконцентрированным раствором аммиака в большом реакционном объеме, что обеспечивает синхронизацию полимерной сшивки удлиненных оксигидратных диполей геля.

Способ осуществляют, получая гель оксигидрата металла путем щелочного осаждения 2%-ным раствором аммиака в реакторе объемом не менее 5 л, при этом введение раствора аммиака осуществляют в начальный момент со скоростью 0,025 мл/с, а после помутнения смеси и ее перемешивания скорость увеличивают до 0,04...0,05 мл/с, помещая свежеприготовленный гель оксигидрата металла в полую трубку с закрепленными на концах платиновыми электродами, с которых снимают ток на аккумулирующую установку.

Пример 1. Химический источник тока на основе оксигидрата железа

200 мл раствора соли хлорида железа (III) с концентрацией 1 моль/л помещают в реактор для синтеза (емкость 5 л), разбавляют дистиллированной водой до 3 л. Производят щелочное осаждение оксигидрата железа 2%-ным раствором аммиака при постоянном перемешивании реакционной смеси. Мешалку располагают по центру реактора на расстоянии 1...2 см от дна так, чтобы раствор полностью перемешивался. Из капельной воронки начинают добавлять по каплям раствор аммиака. В начале скорость капания составляет около 0,025 мл/с. При появлении помутнения капанье прекращают и перемешивают смесь в течение 5...7 мин. После этого скорость капания увеличивают до 0,04...0,05 мл/с. Контролируют рН раствора и устанавливают рН синтеза 8. После этого доводят объем раствора до 5 л. Помещают свежеприготовленный гель оксигидрата железа в полую трубку, закрепленную на мешалке для предотвращения расслоения и помещенную в термостат, на концах которой закреплены круглые платиновые электроды (R=0,4 см), с которых снимают ток на аккумулирующую установку.

Полученные значения тока самоорганизации геля оксигидрата железа представлены на фиг.1

Пример 2. Химический источник тока на основе оксигидрата ниобия

350 мл раствора соли оксихлорида ниобия (V) с концентрацией 0,2 моль/л помещают в реактор для синтеза (емкость 5 л), разбавляют дистиллированной водой до 3 л. Производят щелочное осаждение оксигидрата ниобия 2%-ным раствором аммиака при постоянном перемешивании реакционной смеси. Мешалку располагают по центру реактора на расстоянии 1...2 см от дна так, чтобы раствор полностью перемешивался. Из капельной воронки начинают добавлять по каплям раствор аммиака. В начале скорость капания составляет около 0,025 мл/с. При появлении помутнения капанье прекращают и перемешивают смесь в течение 5...7 мин. После этого скорость капания увеличивают до 0,04...0,05 мл/с. Контролируют рН раствора и устанавливают рН синтеза 3,5. После этого доводят объем раствора до 5 л. Помещают свежеприготовленный гель оксигидрата ниобия в полую трубку, закрепленную на мешалке для предотвращения расслоения и помещенную в термостат, на концах которой закреплены круглые платиновые электроды (R=0,4 см), с которых снимают ток на аккумулирующую установку.

Полученные значения тока самоорганизации геля оксигидрата ниобия представлены на фиг.2

Пример 3. Химический источник тока на основе оксигидрата циркония

200 мл раствора соли оксихлорида циркония с концентрацией 1 моль/л помещают в реактор для синтеза (емкость 5 л), разбавляют дистиллированной водой до 3 л. Производят щелочное осаждение оксигидрата циркония 2%-ным раствором аммиака при постоянном перемешивании реакционной смеси. Мешалку располагают по центру реактора на расстоянии 1...2 см от дна так, чтобы раствор полностью перемешивался. Из капельной воронки начинают добавлять по каплям раствор аммиака. В начале скорость капания составляет около 0,025 мл/с. При появлении помутнения капанье прекращают и перемешивают смесь в течение 5...7 минут. После этого скорость капания увеличивают до 0,04...0,05 мл/с. Контролируют рН раствора и устанавливают рН синтеза 3,5. После этого доводят объем раствора до 5 л. Помещают свежеприготовленный гель оксигидрата циркония в полую трубку, закрепленную на мешалке для предотвращения расслоения и помещенную в термостат, на концах которой закреплены круглые платиновые электроды (R=0,4 см), с которых снимают ток на аккумулирующую установку.

Полученные значения тока самоорганизации геля оксигидрата циркония представлены на фиг.3.

Изобретение может быть использовано как источник электрического тока, где в качестве накопителей могут быть использованы сверхпроводящие соленоиды или суперконденсаторы.

Похожие патенты RU2300161C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ НА ОСНОВЕ ГЕЛЕЙ ОКСИГИДРАТОВ МЕТАЛЛОВ 2005
  • Сухарев Юрий Иванович
  • Крупнова Татьяна Георгиевна
  • Апаликова Инна Юрьевна
RU2289474C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ НА ОСНОВЕ ГЕЛЕЙ ОКСИГИДРАТОВ МЕТАЛЛОВ 2007
  • Сухарев Юрий Иванович
  • Крупнова Татьяна Георгиевна
  • Лебедева Ирина Юрьевна
  • Носов Константин Игоревич
RU2326728C1
ЭКСПЕРИМЕНТАЛЬНЫЙ СПОСОБ УНИЧТОЖЕНИЯ ПАТОГЕННЫХ И УСЛОВНО-ПАТОГЕННЫХ МИКРООРГАНИЗМОВ 2012
  • Сухарев Юрий Иванович
  • Апаликова Инна Юрьевна
  • Лебедева Ирина Юрьевна
RU2500430C1
Способ исследования нанотоковых сегнетоэлектрических проявлений гелей оксигидратов d- и f- элементов и устройство для обнаружения таких нанотоковых пульсирующих сегнетоэлектрических проявлений 2018
  • Сухарев Юрий Иванович
  • Апаликова Инна Юрьевна
  • Апаликов Виталий Олегович
  • Марков Борис Анатольевич
  • Малахова Валерия Александровна
RU2678191C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ НА ОСНОВЕ ГЕЛЕЙ ОКСИГИДРАТОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 2008
  • Батист Александра Владимировна
  • Авдин Вячеслав Викторович
  • Никитин Евгений Александрович
RU2359752C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА 1994
  • Сухарев Ю.И.
  • Сухарева И.Ю.
  • Лепп Я.Н.
RU2082494C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ НА ОСНОВЕ СМЕШАННЫХ ГЕЛЕЙ ОКСИГИДРАТА ЦИРКОНИЯ И КРЕМНИЕВОЙ КИСЛОТЫ 2010
  • Кривцов Игорь Владимирович
  • Авдин Вячеслав Викторович
  • Матвейчук Юрий Васильевич
RU2448769C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ЦИРКОНИЯ ТЕТРАГОНАЛЬНОЙ МОДИФИКАЦИИ ДЛЯ ПРОИЗВОДСТВА КАТАЛИЗАТОРОВ 2008
  • Пашков Геннадий Леонидович
  • Сайкова Светлана Васильевна
  • Пантелеева Марина Васильевна
RU2400429C2
СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ 2012
  • Сухарев Юрий Иванович
  • Апаликова Инна Юрьевна
  • Лебедева Ирина Юрьевна
RU2523325C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА НА ОСНОВЕ ОКСИГИДРАТА ЖЕЛЕЗА 1994
  • Сухарев Ю.И.
  • Сухарева И.Ю.
  • Лепп Я.Н.
RU2073562C1

Иллюстрации к изобретению RU 2 300 161 C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА В ГЕЛЕВЫХ ОКСИГИДРАТНЫХ СИСТЕМАХ

Изобретение относится к способам получения токов и может быть использовано для создания батарей или суперконденсаторов. Техническим результатом изобретения является получение с помощью химического источника на основе гелей оксигидратов металлов больших токовых величин с большей частотой. Способ получения электрического тока включает в себя стадии: получение геля оксигидрата металла путем щелочного осаждения из раствора соли металла, помещение свежеприготовленного геля оксигидрата металла в полую трубку с закрепленными на концах платиновыми электродами, с которых снимается электроток на аккумулирующей установке. Согласно изобретению, осаждение геля осуществляют в реакторе объемом не менее 5 л путем медленного осаждения 2%-ным раствором аммиака. 3 ил.

Формула изобретения RU 2 300 161 C1

Способ получения электрического тока в гелевых оксигидратных системах, включающий получение геля оксигидрата металла путем щелочного осаждения из раствора соли металла, помещение свежеприготовленного геля оксигидрата металла в полую трубку с закрепленными на концах платиновыми электродами, с которых снимают ток на аккумулирующую установку, отличающийся тем, что осаждение геля осуществляют 2%-ным раствором аммиака в реакторе объемом не менее 5 л, при этом введение раствора аммиака осуществляют в начальный момент со скоростью 0,025 мл/с, а после помутнения смеси и ее перемешивания скорость увеличивают до 0,04...0,05 мл/с.

Документы, цитированные в отчете о поиске Патент 2007 года RU2300161C1

СУХАРЕВ Ю.И
и др
Вариации тока самоорганизации гелевых оксигидратных систем циркония как отражение температуры термотропного перехода
Известия челябинского научного центра
УрО РАН, 2005, вып.3, с.45-49
СЕРА-ФОСФОРНЫЕ И СЕРА-ФОСФОР-ОЛЕФИНОВЫЕ СОПОЛИМЕРЫ, ДОПИРОВАННЫЕ КАТАЛИТИЧЕСКИМИ ДОБАВКАМИ, КАК АКТИВНЫЕ КАТОДНЫЕ МАТЕРИАЛЫ 2002
  • Трофимов Б.А.
  • Гусарова Н.К.
  • Мячина Г.Ф.
  • Малышева С.Ф.
  • Иванова Н.И.
RU2224334C2
US 2004202939 A1, 14.10.2004
US 2005158615 A1, 21.07.2005
JP 2005340029 A, 08.12.2005.

RU 2 300 161 C1

Авторы

Сухарев Юрий Иванович

Крупнова Татьяна Георгиевна

Лебедева Ирина Юрьевна

Кострюкова Анастасия Михайловна

Даты

2007-05-27Публикация

2006-01-10Подача