Изобретение относится к области лазерной физики и может быть использовано при накачке активных жидких, газовых и твердых сред.
Известен твердотельный лазер [1], содержащий оптически связанные активный элемент, резонатор, модулятор добротности резонатора, расположенные на одной оптической оси, источник накачки активного элемента, систему фокусировки лазерного излучения в виде объективов и зеркал и систему охлаждения активного элемента.
Недостатком этого лазера является невозможность получения высокой степени равномерности и однородности накачки активной среды.
Наиболее близким по технической сущности к заявляемому устройству является твердотельный лазер [2], содержащий оптически связанные активный элемент, резонатор, модулятор добротности резонатора, расположенные на одной оптической оси, источник накачки активного элемента и систему охлаждения, систему фокусировки лазерного излучения в виде набора объективов и эллиптических зеркал. Модулятор добротности резонатора выполнен в виде отдельно стоящего блока и может быть пассивным или активным.
Недостатком этого лазера является невозможность получения высокой степени равномерности, однородности и ортогональности накачки активного рабочего тела в сферической кювете.
Задачей заявляемого устройства является получение практически сферической сходящейся волны импульсного лазерного излучения и тем самым обеспечение высокой степени равномерности, однородности и ортогональности накачки сферической кюветы с активной средой.
Для решения поставленной задачи предлагается твердотельный лазер, содержащий оптически связанные активный элемент, резонатор, модулятор добротности резонатора, источник накачки активного элемента и систему охлаждения.
Новым, по мнению автора, является то, что модулятор добротности резонатора представляет собой пассивный модулятор добротности и выполнен в виде пленки, нанесенной на внутреннюю поверхности активного элемента, или представляет собой активный модулятор добротности и выполнен в виде единого блока с активным элементом, при этом плоскости поляризации излучения отдельных лазерных сегментов перпендикулярны меридиональным сечениям сферы; зеркала резонатора нанесены на внешнюю поверхность активного элемента и внешнюю поверхность модулятора, а охлаждающая активный элемент жидкость размещена в зазоре между активным элементом и матрицей лазерных диодов, при этом внешнее зеркало резонатора прозрачно для излучения лазерных диодов.
Сущность изобретения поясняется чертежами, на которых представлено предлагаемое устройство (фиг.1), (фиг.2), а также фиг.3, на которой представлен отдельный лазерный блок.
Твердотельный лазер содержит активный элемент 1 в виде сферического слоя из сборки шестигранных сегментов (фиг.1). Каждый сегмент имеет блочную конструкцию, объединяющую активный элемент 1, модулятор добротности 4, ограниченные зеркалами резонатора 5, 6 (короткий резонатор), матрицу лазерных диодов 2 и систему охлаждения 3. Внешние зеркала 5 сегментов образуют внешний концентрический резонатор.
На внешней поверхности сферического слоя (фиг.1) расположена матрица лазерных диодов накачки 2. Их разделяет система охлаждения 3 в виде щелевого зазора, в котором прокачивается охлаждающая активный элемент жидкость. На внутренней поверхности сферического слоя располагается пассивный модулятор добротности резонатора 4. Диэлектрические зеркала резонатора наносятся на внешнюю 5 (100% отражение на длине волны лазерного излучения и 100% пропускание излучения накачки) и внутреннюю 6 (˜10-20% отражение на длине волны лазерного излучения) поверхности сферического слоя. Внешнее зеркало резонатора образует концентрический сферический резонатор. Толщина активного элемента зависит от коэффициента поглощения излучения накачки и для активного элемента из Nd-SiO2 и излученния накачки с λ=0,8 мкм составит ˜20 мм.
Лазер работает следующим образом. Импульс излучения диодов 2 накачки длительностью ˜200 мкс создает инверсную населенность в объеме активного элемента 1. На линейном этапе развития генерации, в течение которого мощность излучения в концентрическом резонаторе лазера медленно нарастает, начиная со спонтанного шума, происходит формирование пространственной и спектральной структуры излучения. Из пространственных мод наиболее высокую добротность имеет мода с перетяжкой в центре сферы, которая и сформируется на этом этапе. При достижении уровня насыщения среды пассивного модулятора 4 происходит высвечивание запасенной в активном элементе энергии. Так как добротность резонатора, образованного зеркалами 5 и 6, значительно выше, чем в резонаторе, образованном внешними зеркалами, из-за больших потерь в накачиваемой активной среде 7, то генерация развивается в коротком резонаторе, образованном этими зеркалами, и ее длительность составит единицы наносекунд.
При активной модуляции добротности с помощью электрооптического активного модулятора добротности 4 (фиг.3) импульс управления затвора имеет ступенчатую форму, что обеспечит сходный характер развития генерации, но управляемый и более эффективный.
Размер области перетяжки концентрического резонатора в центре сферы согласно [3] в рамках геометрической оптики стремится к нулю. Согласно принципу неопределенности Гейзенберга неопределенность в положении фотона и неопределенность его импульса связаны неравенством ΔpΔx>h.
В сфере Δр=2h/λ и размеры области фокусировки Δх>λ/2.
Распределение интенсивности лазерного излучения в активной среде сферической ячейки будет иметь вид q=(q0/r2)[exp-μ(R-r)+exp-μ(R+r)], где μ - коэффициент поглощения активной среды. Так как активная среда в сферической ячейке имеет высокий коэффициент поглощения на длине волны генерации твердотельного лазера, то интерференция сходящейся и расходящейся от центра волн излучения будет существенна только вблизи центра сферы, а вне центральной области распределение интенсивности накачки будет достаточно равномерным.
При сфазированной генерации n лазерных источников, из которых составлена сфера, происходит когерентное сложение полей от отдельных модулей и дополнительное увеличение плотности мощности в n раз [4]. Фазовая синхронизация достигается за счет сильной дифракционной связи между лазерными сегментами.
Таким образом, заявляемый твердотельный лазер обеспечивает получение практически сферической сходящейся волны импульсного лазерного излучения и тем самым равномерное освечивание сферической кюветы с активной средой, размещенной в центре сферической поверхности, причем достаточно равномерное распределение интенсивности накачки будет и по радиусу ячейки.
Источники информации
1. Thomas C.E. // Appl. Opt. 1975. V.14. P.1267-1272.2
2. Glass A.J. Патент США №4017163 от 12.04.1977.
3. Н.Kogelnik, T.Li // Appl. Opt. 1966.V.5. P.1550-1567.
4. Hal.E.Hagermeier, S.R.Robinson // Appl. Opt. 1979. V.18. P.270-279.
название | год | авторы | номер документа |
---|---|---|---|
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР ДЛЯ НАКАЧКИ АКТИВНОЙ СРЕДЫ | 2005 |
|
RU2302065C2 |
ДИСКОВЫЙ ЛАЗЕР С МОДУЛИРОВАННОЙ ДОБРОТНОСТЬЮ РЕЗОНАТОРА (ВАРИАНТЫ) | 2007 |
|
RU2365006C2 |
Малогабаритный инфракрасный твердотельный лазер | 2016 |
|
RU2638078C1 |
ИНФРАКРАСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 2015 |
|
RU2593819C1 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 2008 |
|
RU2408118C2 |
Лазер с продольной накачкой | 2016 |
|
RU2623688C1 |
Твердотельная хирургическая лазерная установка для прецизионного рассечения тканей | 2018 |
|
RU2683563C1 |
Твердотельный лазер с модуляцией добротности и комбинированным методом синхронизации мод | 2021 |
|
RU2799662C2 |
Твердотельный лазер | 2016 |
|
RU2635400C1 |
ЛАЗЕР С МОДУЛЯЦИЕЙ ДОБРОТНОСТИ РЕЗОНАТОРА И СИНХРОНИЗАЦИЕЙ МОД | 2011 |
|
RU2478242C2 |
Изобретение относится к области лазерной физики и может быть использовано при накачке активных жидких, газовых и твердых сред. Лазер содержит оптически связанные активный элемент, резонатор, модулятор добротности резонатора, источник накачки активного элемента и систему охлаждения. Активный элемент выполнен в виде n шестиугольных сегментов, заполняющих сферический слой, причем n - четное число. Источник накачки в виде матрицы лазерных диодов размещен по внешней поверхности активного элемента. Пассивный модулятор добротности резонатора выполнен в виде пленки и размещен на внутренней поверхности активного элемента. Зеркала резонатора нанесены на внешнюю поверхность активного элемента и внешнюю поверхность модулятора. Охлаждающая активный элемент жидкость размещена в зазоре между активным элементом и матрицей лазерных диодов. Внешнее зеркало резонатора прозрачно для излучения лазерных диодов. Модулятор представляет собой активный электрооптический модулятор добротности и выполнен в виде единого блока с активным элементом. Плоскости поляризации излучения отдельных лазерных сегментов перпендикулярны меридиональным сечениям сферы. Технический результат - получение практически сферической сходящейся волны импульсного лазерного излучения, получение высокой степени равномерности, однородности и ортогональности накачки сферической кюветы с активной средой. 3 ил.
Твердотельный лазер для накачки активной среды, содержащий оптически связанные активный элемент, резонатор, модулятор добротности резонатора, источник накачки активного элемента и систему охлаждения активного элемента, отличающийся тем, что активный элемент выполнен в виде n шестиугольных сегментов, заполняющих сферический слой, причем n - четное число, источник накачки в виде матрицы лазерных диодов размещен по внешней поверхности активного элемента, модулятор добротности резонатора представляет собой пассивный модулятор добротности и выполнен в виде пленки, нанесенной на внутреннюю поверхность активного элемента, или представляет собой активный модулятор добротности и выполнен в виде единого блока с активным элементом, при этом плоскости поляризации излучения отдельных лазерных сегментов перпендикулярны меридиональным сечениям сферы; зеркала резонатора нанесены на внешнюю поверхность активного элемента и внешнюю поверхность модулятора, а охлаждающая активный элемент жидкость размещена в зазоре между активным элементом и матрицей лазерных диодов, при этом внешнее зеркало резонатора прозрачно для излучения лазерных диодов.
ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР | 0 |
|
SU367625A1 |
DE 4191708, 31.10.1996 | |||
ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР С АКТИВНЫМ ЭЛЕМЕНТОМ ИЗ НАБОРА ДИСКОВ | 1993 |
|
RU2091936C1 |
RU 2053588, 27.01.1996 | |||
АВТОНОМНАЯ ГАЗОНОКОСИЛКА | 1991 |
|
RU2103860C1 |
Рыхлитель | 1982 |
|
SU1055839A2 |
Авторы
Даты
2007-06-27—Публикация
2005-03-24—Подача