СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛЯХ Российский патент 2007 года по МПК B32B15/04 C23C14/16 C23C14/28 

Описание патента на изобретение RU2305034C1

Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, в частности к способам получения защитных (жаростойких) покрытий на деталях, и может найти применение в авиадвигателестроении, машиностроении, энергетике и других отраслях техники для защиты, например, лопаток и камер сгорания газотурбинных двигателей, поршней для двигателей внутреннего сгорания от высоких температур.

Известен способ получения защитного покрытия, включающий последовательное нанесение двух металлических слоев и керамического слоев, при этом металлические слои наносят в вакууме и после нанесения металлического слоя проводят диффузионный вакуумный отжиг, керамический слой наносят толщиной 70-300 мкм, после чего керамический слой покрытия упрочняют высокотемпературной импульсной плазмой с последующим окислительным отжигом при температуре не менее 1050°С не менее 5 часов (см. патент RU №2089655, кл. С23С 14/06, опубл. 10.09.1997).

Однако нанесенное таким способом покрытие ненадежно и недолговечно при работе, так как при получении покрытия данным способом в керамическом слое наблюдается наличие дефектов в виде каналов и полостей, через которые происходит доступ кислорода рабочей (газовой среды) к металлу и, как следствие, окисление металлического покрытия под керамикой, что приводит к отслоению керамики и ее преждевременному растрескиванию.

Технический результат заявленного предложения - повышение надежности и долговечности защитного покрытия.

Указанный технический результат достигается тем, что в способе получения защитного покрытия на деталях, включающем нанесение на поверхность детали, по меньшей мере, одного металлического слоя и керамического слоя на основе оксида циркония, содержащего оксид иттрия, и упрочнение керамического слоя, согласно изобретению после нанесения первого металлического слоя проводят алитирование или хромоалитирование, а упрочнение керамического слоя осуществляют путем нанесения на него, по меньшей мере, трех керамических слоев на основе оксида циркония, содержащих 6-9% оксида иттрия и 3-30% оксида алюминия.

На поверхность детали наносят, по меньшей мере, один металлический слой. Количество металлических слоев может быть два и более. Однако алитирование или хромоалитирование необходимо производить только после нанесения первого слоя, так как в этом случае происходит дополнительное легирование алитированного или хромоалитированного слоя элементами металлического слоя и обеспечивается высокая прочность сцепления покрытия с поверхностью детали.

Операция алитирования или хромоалитирования необходима для обогащения покрытия алюминием и его сплавами с кремнием, и/или цирконием, и/или иттрием, и/или иттербием, и/или эрбием, и/или лантаном, и/или церием.

Причем может быть содержание иттрия, эрбия, церия, иттербия, лантана ≤5%, содержание кремния ≤12%, циркония ≤0,5%.

В зависимости от условий эксплуатации изделия, в каждом конкретном случае, выбирают насыщать поверхность детали алюминием (алитирование) или алюминием с хромом (хромоалитирование). При высоких термомеханических нагрузках целесообразно использовать хромоалитирование, а при низких - достаточно использовать алитирование.

Добавка оксида алюминия от 3 до 30% в керамические слои увеличивает прочность керамического слоя и его эрозионную стойкость, снижает проницаемость кислорода через слой керамики к металлу. При увеличении концентрации оксида алюминия более 30% наблюдается снижение вязкости и трещиностойкости керамических слоев, а при содержании оксида алюминия менее 3% происходит процесс окисления металлического покрытия под керамикой из-за высокой проницаемости кислорода рабочей газовой среды к металлу, что приводит к снижению надежности покрытия.

Количество слоев керамики из оксида алюминия в количестве 3-30%, оксида циркония и оксида иттрия не менее трех. При количестве слоев менее 3-х не будет достигнуто необходимое упрочнение керамического слоя, становится малозначимым торможение диффузии кислорода от газовой среды к металлу, возрастает скорость коррозии металла, снижается адгезия керамики и надежность покрытия. Верхний предел количества слоев выбирают в зависимости от условий эксплуатации и назначения детали, на которой это покрытие получают. В каждом конкретном случае количество слоев выбирают расчетным путем. Так, если покрытие получают на лопатках газовых турбин, максимальное количество керамических слоев пять-шесть, при получении покрытия на поршнях ДВС количество слоев семь-восемь.

Слои наносят известными способами, такими как вакуумно-плазменный, диффузионный, электронно-лучевой, катодное или лазерное напыление.

Реализация способа рассмотрена на примере получения защитного (жаростойкого) покрытия на охлаждаемых лопатках газовых турбин, работающих при высоких температурах до 1750°С.

Пример 1. На поверхность лопатки наносят на вакуумной плазменной установке при токе на детали 8 А и напряжении 30 В первый металлический слой из сплава на никелевой основе: Ni - основа, Cr 15%, Al 8%, W 4%, Re 2,1%, Та 1,5%, Hf 2,0%, Si 0,8%, Y 0,6% толщиной 30 мкм. Затем лопатки подвергают алитированию при температуре 1000°С в течение 4 часов, после этого проводят тепловую обработку в газостате (газостатирование) при 1000°С в течение 3 часов и напыляют второй слой металлического сплава на основе Al: Al - основа, Si 11%, Y 1,8%. Затем проводят диффузионный отжиг при 1000°С. Далее в вакууме на электронно-лучевой установке напыляют слой керамики ZrO2·(6-9)%Y2O3 толщиной 160 мкм и получают керамическое покрытие со столбчатой структурой. Для его упрочнения, на поверхность этого слоя напыляют электронно-лучевым способом три слоя керамики [ZrO2·(6-9)%Y2O3]·20%Al2О3 толщиной каждого слоя 1-3 мкм.

Пример 2. На поверхность охлаждаемой лопатки газовой турбины наносят способом электродугового катодного распыления металлический слой на никелевой основе: Ni - основа, Cr 18%; Al 8%; Та 10%; Hf 2,0%; Si 1,2%, Yb 0,8%; Се 0,6% толщиной 40 мкм. Затем лопатки подвергают хромоалитированию при температуре 1080°С в течение 4 часов для осаждения слоя диффузионного покрытия на внешней поверхности, а также в полости и каналах. После хромоалитирования на электронно-лучевой установке осаждают пять слоев керамики [ZrO2·(6-9)%Y2O3]·20%Al2О3 толщиной каждого слоя 1-3 мкм для упрочнения и снижения кислородной проницаемости керамики на детали.

Похожие патенты RU2305034C1

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКИ ТУРБИН ГТД 2020
  • Панков Владимир Петрович
  • Ковалев Вячеслав Данилович
  • Панков Денис Владимирович
  • Румянцев Сергей Васильевич
  • Медведев Валерий Иванович
  • Баженов Анатолий Вячеславович
  • Табырца Владимир Иванович
RU2755131C1
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2009
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
RU2402639C1
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2011
  • Панков Владимир Петрович
  • Коломыцев Пётр Тимофеевич
  • Панков Денис Владимирович
RU2469129C1
СПОСОБ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ДЕТАЛИ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2000
  • Падеров А.Н.
  • Векслер Ю.Г.
RU2264480C2
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ЛОПАТКИ ТУРБИН ГТД 2007
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
RU2349679C1
СПОСОБ ФОРМИРОВАНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛЯХ ГАЗОВЫХ ТУРБИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ 2011
  • Дыбленко Юрий Михайлович
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Таминдаров Дамир Рамилевич
  • Дыбленко Михаил Юрьевич
  • Мингажев Аскар Джамилевич
  • Павлинич Сергей Петрович
RU2479666C1
СПОСОБ ЗАЩИТЫ ДЕТАЛЕЙ СЛОЖНОЙ ФОРМЫ ИЗ НИКЕЛЕВЫХ СПЛАВОВ 1991
  • Новиков В.Н.
  • Захаров Б.М.
  • Владимиров А.И.
  • Головкин Ю.И.
  • Варигин А.Б.
  • Головачова О.П.
  • Ларионов В.Н.
RU2053310C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛЯХ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ 2007
  • Поклад Валерий Александрович
  • Крюков Михаил Александрович
  • Рябенко Борис Владимирович
  • Козлов Дмитрий Львович
RU2375499C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛИ ГАЗОВОЙ ТУРБИНЫ ИЗ НИКЕЛЕВОГО ИЛИ КОБАЛЬТОВОГО СПЛАВА 2011
  • Дыбленко Юрий Михайлович
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Таминдаров Дамир Рамилевич
  • Дыбленко Михаил Юрьевич
  • Мингажев Аскар Джамилевич
  • Павлинич Сергей Петрович
RU2496911C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2009
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Мингажев Аскар Джамилевич
  • Дыбленко Юрий Михайлович
  • Быбин Андрей Александрович
  • Новиков Антон Владимирович
  • Петухов Игорь Геннадиевич
RU2441103C2

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ДЕТАЛЯХ

Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, и может быть использовано в авиадвигателестроении, машиностроении, энергетике и других отраслях техники. На поверхность детали наносят, по меньшей мере, один металлический слой. Затем проводят алитирование или хромоалитирование. После этого наносят керамический слой на основе оксида циркония, содержащего оксид иттрия. Упрочнение керамического слоя осуществляют путем нанесения на него, по меньшей мере, трех керамических слоев на основе оксида циркония, содержащих 6-9% оксида иттрия и 3-30% оксида алюминия. Данный способ позволяет повысить надежность и долговечность защитного покрытия.

Формула изобретения RU 2 305 034 C1

Способ получения защитного покрытия на деталях, включающий нанесение на поверхность детали, по меньшей мере, одного металлического слоя и керамического слоя на основе оксида циркония, содержащего оксид иттрия, и упрочнение керамического слоя, отличающийся тем, что после нанесения первого металлического слоя проводят алитирование или хромоалитирование, а упрочнение керамического слоя осуществляют путем нанесения на него, по меньшей мере, трех керамических слоев на основе оксида циркония, содержащих 6-9% оксида иттрия и 3-30% оксида алюминия.

Документы, цитированные в отчете о поиске Патент 2007 года RU2305034C1

СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ 1994
  • Шамарина Г.Г.
  • Киселев М.Е.
RU2089655C1
СПОСОБ ЗАЩИТЫ ДЕТАЛЕЙ СЛОЖНОЙ ФОРМЫ ИЗ НИКЕЛЕВЫХ СПЛАВОВ 1991
  • Новиков В.Н.
  • Захаров Б.М.
  • Владимиров А.И.
  • Головкин Ю.И.
  • Варигин А.Б.
  • Головачова О.П.
  • Ларионов В.Н.
RU2053310C1
EP 0440115 A, 07.08.1991
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР 1922
  • Гебель В.Г.
SU2000A1

RU 2 305 034 C1

Авторы

Елисеев Юрий Сергеевич

Абраимов Николай Васильевич

Шкретов Юрий Павлович

Терехин Андрей Михайлович

Даты

2007-08-27Публикация

2006-02-17Подача