Изобретение относится к системам контроля и управления процессами воспламенения и сгорания топлива, конкретно к системам контроля и управления процесса сгорания углеводородного топлива в камерах сгорания ДВС.
К настоящему времени для контроля воспламенения и сгорания топлива в топках металлургических печей, котельных установок, в форсажных камерах сгорания турбореактивных двигателей широко применяются системы, работа которых основана на измерении ионного тока пламени и сравнении замеренной величины с эталонным значением тока [1, 2, 3]. Появление ионного тока в пламени регистрируется практически мгновенно, а изменение его величины отражает изменение параметров горения - давления, температуры, турбулентности, состава смеси, степени его завершенности.
Для измерения ионного тока в пламени наиболее часто применяются ионизационные датчики, в которых одним из электродов является изолированный от камеры сгорания металлический стержень, а вторым - масса камеры сгорания. Ионизационные датчики такого типа в системах автоматического контроля и управления процессов воспламенения и горения представлены на рис.158, 159 и 160 [1], стр.260-264 [2] и в [3].
Обсуждаемые способы содержат следующие операции: одновременно подается электрическое напряжение на электроды ионизационного датчика и на свечи зажигания запального устройства. Затем подается топливо и воздух или топливно-воздушная смесь (ТВС) в камеру сгорания или топку. Воспламенение ТВС приводит к формированию факела пламени. Пламя, омывая электроды ионизационного датчика, замыкает электрическую цепь, в которой возникает электрический ток, что свидетельствует о нормальном воспламенении и горении. При исчезновении ионного тока в электрической цепи датчика его цепь размыкается и проходит сигнал на прекращение подачи топлива.
Основным недостатком рассмотренных способов и устройств является то, что они надежно и эффективно определяют наличие воспламенения и горения в камерах сгорания и топках, работающих при постоянном давлении, температуре, скорости и турбулентности потока ТВС и требуют новых разработок для применения таких систем с целью контроля и управления сжиганием топлива при минимальной токсичности отработавших газов (ОГ).
В условиях поршневых ДВС, когда воспламенение и сгорание топливно-воздушного заряда (ТВР) протекает в течение нескольких миллисекунд при меняющихся скоростях и турбулентности, изменении температуры ˜ в 4 раза, давления ˜ в 3,5-5 раз в настоящее время в качестве ионизационного датчика пытаются применять свечу зажигания [4, 5, 6]. При этом работы ведутся в направлении определения по изменению ионного тока состава смеси, протекания давления в камере сгорания и концентрации оксида азота.
Основным недостатком применения свечи зажигания в качестве ионизационного датчика является то, что ионный ток измеряется в небольшом объеме вблизи ее электродов [1, 2, 3]. В этом случае контроль протекания химических реакций сгорания возможен лишь в момент воспламенения и первоначальный период распространения пламени, пока пламя омывает электроды ионизационного датчика - это первый пик ионного тока, хемиионизация. Затем величина ионного тока снижается и к окончанию процесса сгорания появляется второй пик, так называемый постпламенный, обусловленный термоионизацией. И если по характеру протекания и изменению величины первого и второго пика ионного тока можно судить о составе смеси, давлении и концентрации оксида азота, то о контроле концентрации несгоревших углеводородов (СН) по этим сигналам судить невозможно.
Считается общеизвестным [7], что концентрация несгоревших углеводородов определяется главным образом степенью завершенности химических реакций сгорания вблизи стенок камеры сгорания.
Целью изобретения является обеспечение минимальной концентрации несгоревших углеводородов в отработавших газах поршневых двигателях внутреннего сгорания.
Указанная цель достигается тем, что в известном способе контроля и управления сгоранием топлива, включающем измерение и сравнение с эталонным значением ионного тока в пламени и регулирование подачи топлива, измерение и сравнение между собой величин ионного тока производят в зоне завершения сгорания топлива, поддерживая соотношение величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, в диапазоне 0,6-0,75. При отношении величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, большем 0,75, необходимо увеличение подачи топлива, а при значениях, меньших 0,6, - уменьшение количества топлива.
Для осуществления предлагаемого способа контроля и управления сгоранием топлива в известном ионизационном датчике, содержащем изолированные друг от друга электроды, один из которых, отрицательный, - камера сгорания двигателя, второй, положительный, - изолированный от камеры сгорания металлический стержень, установлен в наиболее удаленной от свечи зажигания зоне камеры сгорания.
Так как измерение ионного тока пламени и сравнение замеряемого тока с величиной ионного тока при α=1 производится непрерывно во все время работы ДВС, то в любой момент времени имеется информация о динамике выгорания ТВР вблизи стенки камеры сгорания, удаленной от свечи зажигания. В настоящее время считается общеизвестным, что концентрация несгоревших углеводородов в ОГ поршневых ДВС определяется главным образом динамикой выгорания в тонком слое у стенок камеры сгорания.
Вследствие того, что скорость передачи информации о динамике выгорания определяется скоростью перемещения электронов в пламени, то результаты измерения и сравнения величин тока отражают динамику выгорания практически мгновенно.
Следовательно, способ контроля и управления сгоранием топлива и ионизационный датчик для его осуществления соответствует критерию изобретения «новизна».
Сравнение решения не только с прототипом, но и с другими техническими решениями в данной области техники позволило выявить в них признаки, отличающие заявляемое решение от прототипа, что позволяет сделать вывод о соответствии критерию «изобретательский уровень».
На фиг.1 показана схема системы для реализации предлагаемого способа контроля и управления сгоранием топлива и ионизационного датчика для его осуществления, на фиг.2 - экспериментальная зависимость концентрации несгоревших углеводородов от соотношения измеряемой величины ионного тока к ионному току при коэффициенте избытка воздуха, равном единице.
Система для реализации способа контроля и управления сгоранием топлива, как показано на фиг.1, содержит камеру сгорания 1, поршень 2, свечу зажигания 3, металлический стержень 4 - положительный электрод, изолированный от камеры сгорания - отрицательного электрода электронной системой управления двигателем (ЭСУД), и форсунки 6 подачи топлива.
Ионизационный датчик, см. фиг.1 содержит отрицательный электрод - камеру сгорания 1 и положительный электрод - металлический стержень 4, изолированный от камеры сгорания и установленный в зоне, наиболее удаленной от свечи зажигания 3.
Пример работы: при приближении днища поршня 2 к верхней мертвой точке на свечу зажигания 3 подается электрическое питание высокого напряжения и между электродами свечи проскакивает электрическая искра, воспламеняющая топливно-воздушную смесь в объеме вокруг электродов свечи. От воспламенившегося объема пламя распространяется по свежей ТВС в камере сгорания. В процессе завершения сгорания фронт пламени, достигнув положительного электрода - металлического стержня 4, замыкает электрическую цепь между электродами ионизационного датчика, камерой сгорания 1 и металлическим стержнем 4, в которой появляется ионный ток. Величина ионного тока, характеризующая интенсивность выгорания ТВС, сравнивается в ЭСУД с величиной ионного тока при α=1 и, если отношение величин тока выходит за пределы 0,6-0,75, ЭСУД выдает команду на изменение расхода топлива через форсунку 6.
Проведенные экспериментальные исследования на одноцилиндровой установке ДВС и на двигателе ВА3-1111 подтвердили, см. фиг.2, что применение предлагаемого способа контроля и управления сгоранием топлива и ионизационного датчика для его осуществления позволяют обеспечить сжигание топлива при минимальной концентрации несгоревших углеводородов в ОГ ДВС.
Разработана документация для изготовления ионизационного датчика и системы контроля и управления для ее опытной эксплуатации в условиях экспериментального двигателя.
Литература:
1. Степанов Е.М., Дьячков Б.Г. Ионизация в пламени и электрическое поле. М.: Металлургия, 1968.
2. Лаутон Д.Ж. Электрические аспекты горения. М.: Энергия, 1976.
3. Шайкин А.П., Русаков М.М., Егоров А.Г. и др. Способ контроля и управления сжиганием топлива и ионизационный датчик для его осуществления. Патент на изобретение РФ №2096690, Бюл. №32.
4. R.Reinmann, A.Saitzkoff, F.Mauss, "Local Air-Fuel Ratio Measurements Using the Spark Plug as an lonisation Sensor", SAE Paper No 970856, 1997.
5. A.Saitzkoff, R.Reinmann, F.Mauss, M.Glavmo, "In-Cylinder Pressure Measurements Using the Spark Plug as an lonisation Sensor", SAE Paper No 970857, 1997.
6. Gerard W. Malaczynski and Michael E. Baker, "Real-Time Digital Signal Processing of lonization Current for Engine Diagnostic and Control", SAE Paper No 2003-03-1119.
7. Образование и разложение загрязняющих веществ в пламени: Пер. с англ./Ред. Н.А.Чигир. - М.: Машиностроение, 1981. - 497 с., ил, с.277-285.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИССЛЕДОВАНИЯ ПРОЦЕССА СГОРАНИЯ В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2584085C2 |
Устройство измерения, контроля и диагностики процесса сгорания в камере двигателя внутреннего сгорания | 2016 |
|
RU2620477C1 |
СПОСОБ КОНТРОЛЯ И УПРАВЛЕНИЯ СЖИГАНИЕМ ТОПЛИВА И ИОНИЗАЦИОННЫЙ ДАТЧИК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2096690C1 |
СПОСОБ КОНТРОЛЯ И УПРАВЛЕНИЯ СЖИГАНИЕМ ТОПЛИВА В ПОРШНЕВОМ ДВИГАТЕЛЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2438070C1 |
СПОСОБ ИНТЕНСИФИКАЦИИ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 1996 |
|
RU2135814C1 |
СПОСОБ СОВЕРШЕНСТВОВАНИЯ ПРОЦЕССА СГОРАНИЯ ТОПЛИВА В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2167317C2 |
ГИБРИДНЫЙ ДВИГАТЕЛЬ С УПРАВЛЯЕМЫМ ГОРЕНИЕМ | 2007 |
|
RU2328612C1 |
СПОСОБ СЖИГАНИЯ ТОПЛИВА В ДВИГАТЕЛЯХ ВНУТРЕННЕГО СГОРАНИЯ И СИСТЕМА ЗАЖИГАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2100643C1 |
СИСТЕМА ЛАЗЕРНОГО ЗАЖИГАНИЯ И ЛАЗЕРНАЯ СВЕЧА ЗАЖИГАНИЯ | 2015 |
|
RU2634301C2 |
СПОСОБ РАБОТЫ РОТОРНО-ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2013 |
|
RU2546933C1 |
Изобретение относится к системам контроля и управления процессами воспламенения и сгорания топлива, конкретно к системам контроля и управления процесса сгорания углеводородного топлива в камерах сгорания ДВС. Система для реализации способа контроля и управления сгоранием топлива содержит: камеру сгорания, поршень, свечу зажигания, металлический стержень - положительный электрод, изолированный от камеры сгорания - отрицательного электрода электронной системой управления двигателем (ЭСУД), и форсунки подачи топлива. Ионизационный датчик содержит отрицательный электрод - камеру сгорания и положительный электрод - металлический стержень, изолированный от камеры сгорания и установленный в зоне, наиболее удаленной от свечи зажигания. Величина ионного тока, характеризующая интенсивность выгорания ТВС, сравнивается с величиной ионного тока при α=1 и, если отношение величин тока выходит за пределы 0,6-0,75, выдается команда на изменение расхода топлива через форсунку. Для осуществления предлагаемого способа контроля и управления сгоранием топлива ионизационный датчик установлен в наиболее удаленной от свечи зажигания зоне камеры сгорания. Так как измерение ионного тока пламени и сравнение замеряемого тока с величиной ионного тока при α=1 производится непрерывно во все время работы ДВС, то в любой момент времени имеется информация о динамике выгорания ТВР вблизи стенки камеры сгорания, удаленной от свечи зажигания. Вследствие того, что скорость передачи информации о динамике выгорания определяется скоростью перемещения электронов в пламени, то результаты измерения и сравнения величин тока отражают динамику выгорания практически мгновенно, что дает возможность эффективно контролировать рабочий процесс с целью обеспечения минимальной токсичности выхлопа двигателя. Техническим результатом является обеспечение минимальной концентрации несгоревших углеводородов в отработавших газах поршневых двигателях внутреннего сгорания. 2 н. и 1 з.п. ф-лы, 1 ил.
СПОСОБ КОНТРОЛЯ И УПРАВЛЕНИЯ СЖИГАНИЕМ ТОПЛИВА И ИОНИЗАЦИОННЫЙ ДАТЧИК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2096690C1 |
DE 10012854 A, 19.04.2001 | |||
Гидроцилиндр | 1977 |
|
SU652363A1 |
СПОСОБ ИЗМЕНЕНИЯ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ МИКРООРГАНИЗМОВ | 2004 |
|
RU2287014C2 |
JP 3241223 A, 28.10.1991 | |||
JP 63049624 A, 02.03.1988. |
Авторы
Даты
2007-10-27—Публикация
2006-01-10—Подача