Изобретение относится к бронетехнике и может найти применение в конструкциях боевых машин, эксплуатируемых в районах с сухим тропическим климатом.
Одним из основных внешних факторов, оказывающих решающее влияние на состояние составных частей комплексов вооружений при эксплуатации и боевом применении в районах с сухим тропическим климатом, является воздействие солнечной радиации с интегральной плотностью до 1125 Вт/м2.
Среднегодовое значение средней энергетической экспозиции суммарного солнечного излучения за сутки для сухого тропического климата составляет 21 МДж/м2 (5020 ккал/(м2 сут.).
С учетом средней продолжительности солнечного сияния (время от восхода до захода солнца) за сутки 10 час, среднее значение эффективной энергии солнечного излучения за час составит 21 МДж/м2 (502 ккал/(м2 ч). С учетом закона распределения солнечного излучения по времени суток для 20°-30° с.ш. экстремальное значение эффективной энергии солнечного излучения составляет 4,06 МДж/(м2 ч) (970 ккал/(м2 ч).
При оценке теплового состояния солнечной радиации на боевое отделение берутся значения эффективной энергии солнечного излучения и температуры воздуха для наиболее жаркого региона Ближнего Востока. В этом случае температура воздуха в боевом отделении в зоне расположения экипажа может достигать 86°С.
Известен широкоформатный защитный элемент (DE 10028753 от 09.06.2000 г. МПК7 F41H 7/04), который предназначен для повышения неуязвимости зданий и транспортных средств от огня противника.
Одновременно защитный элемент может быть использован как экран для тепловой защиты экипажа и личного состава, находящегося внутри транспортного средства. Защитный элемент содержит две взаимно разнесенные стенки из прочного материала. Стенки изготовлены в виде согнутых или волнистых ленточных секций.
Недостатком конструкции являются большие габариты и масса защитных элементов.
Частично указанный недостаток устранен в принятом за прототип энергопоглощающем бронеэлементе (DE 19928370 от 21.06.99 г., МНК7 F41H 5/04), который используется в устройствах специальной защиты транспортных средств. Энергопоглощающий бронеэлемент выполнен в виде плоских профилированных листов. Имея большую площадь, бронеэлемент поглощает часть солнечной энергии, в результате чего уменьшается уровень нагрева воздуха внутри транспортного средства в зоне размещения экипажа. Кроме того, при попадании пули или снаряда в бронеэлемент усилия деформации материала распределяются на большую площадь, а кинетическая энергия снаряда преобразовывается в энергию деформации профилированного бронеэлемента.
Недостатком энергопоглощающего бронеэлемента является увеличение габаритов транспортного средства из-за применения профилированных листов, так как увеличение площади поверхности листа приводит к увеличению высоты его профиля.
Задачей предлагаемого изобретения является уменьшение температуры воздуха внутри броневой башни боевой машины при минимальных ее габаритах и весе при эксплуатации в районах с сухим тропическим климатом.
Поставленная задача решается броневой башней, содержащей основную броню и защитные элементы в виде наружного экрана, выполненного из тонких листовых элементов, прикрепленных установленными по их периметру и жестко закрепленными на основной броне бобышками с термоизоляционными прокладками, а внутри под листовыми элементами установлены дополнительные бобышки для обеспечения воздушного зазора между основной броней и листовыми элементами.
Выполнение наружного экрана из тонких листовых элементов уменьшает вес броневой башни. Установка по периметру листовых элементов жестко закрепленных на основной броне бобышек с термоизоляционными прокладками обеспечивает закрепление экрана на основной броне и его термоизоляцию. Установка внутри под листовыми элементами бобышек с обеспечением зазора между основной броней и листовым элементом уменьшает температуру воздуха внутри броневой башни при минимальных ее габаритах.
Предлагаемое техническое решение поясняется графическими материалами, где на фиг.1 представлен график зависимости температуры воздуха внутри броневой башни от величины зазора между основной броней и наружным экраном. На фиг.2 - сечение по месту крепления листового элемента к основной броне, на фиг.3 - сечение по месту размещения бобышки, на фиг.4 - вид сверху на броневую башню с защитными элементами.
Броневая башня с защитными элементами состоит из основной брони 1, на которой приварены бобышки 2. К бобышкам 2 через резиновые прокладки 3 привинчены стальные или алюминиевые листовые элементы 4, повторяющие наружную поверхность основной брони.
Под листовыми элементами 4 установлены пластмассовые бобышки 5, обеспечивающие воздушный зазор между листовым элементом и основной броней. Число бобышек под каждым листовым элементом определяется жесткостью наружного экрана. Оптимальная величина воздушного зазора между листовым элементом и основной броней определяется исходя из интенсивности теплоотдачи в воздушном зазоре и защищаемой поверхности.
где:
α - количество тепла, прошедшее от защитного экрана через воздушный зазор за единицу времени на 1 м2 защищаемой поверхности при единичной разности температур экрана и защищаемой поверхности;
λВ - теплопроводность воздуха;
ΔТВ - разница температур между воздухом в зазоре и защищаемой поверхностью;
νВ - кинематическая вязкость воздуха;
δВ - толщина воздушного зазора;
ТВ - температура воздуха.
Наиболее интенсивная теплоотдача происходит, когда ΔТВ наибольшее, а δВ - наименьшее. Поэтому, увеличивая воздушный зазор, обеспечивают одновременное уменьшение температуры воздуха в зазоре. Ее значение начинает стремиться к температуре окружающей среды, т.е. теплоотдача к защищаемой поверхности будет падать. В пределе теплообмен прекратится, когда температура воздуха в зазоре становится равной температуре окружающей среды, т.е. при величине зазора более 20 мм получаются очень низкие значения перепада температур и температура воздуха в зазоре становится настолько близкой к температуре окружающего воздуха, что дальнейшее увеличение зазора становится малоэффективным.
Исходя из зависимости (1) оптимальная величина воздушного зазора:
где:
ΔТBmin - требуемый оптимальный перепад температур между воздухом в зазоре и охлаждаемой поверхностью;
αmin - минимально требуемый коэффициент теплоотдачи;
ТBmax - максимальная температура воздуха.
Объединяя величины, значения которых в диапазоне температур эксплуатации слабо изменяются: g, λВ, νВ и считая необходимым иметь ΔTBmin в пределах 10÷13°, получим:
Таким образом, предложенное техническое решение позволило уменьшить температуру воздуха внутри броневой башни при минимальных ее габаритах и весе.
Экспериментально установлено, что при зазоре между наружным экраном и основной броней, равном 20 мм, температура воздуха в зоне расположения экипажа уменьшается с 86°С (без экрана) до 54°С (с экраном).
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОЗАЩИТА ОТСЕКА УПРАВЛЕНИЯ БОЕВОЙ МАШИНЫ | 2010 |
|
RU2421682C1 |
МОДЕРНИЗИРОВАННЫЙ ТАНК | 2001 |
|
RU2202756C2 |
БРОНИРОВАННОЕ ТРАНСПОРТНОЕ СРЕДСТВО НА БАЗЕ РАЛЛИЙНОГО АВТОМОБИЛЯ | 2007 |
|
RU2338147C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОЦЕЛЕВОЙ ВОЕННО-ГУСЕНИЧНОЙ МАШИНЫ НА БАЗЕ МОДЕРНИЗИРУЕМОГО ШАССИ ТАНКА | 2005 |
|
RU2294519C2 |
КЕРАМИЧЕСКИЙ БРОНЕЭЛЕМЕНТ И КОМПОЗИТНАЯ БРОНЯ НА ЕГО ОСНОВЕ | 2011 |
|
RU2459174C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ И БРОНЕЗАЩИТНЫЙ МНОГОСЛОЙНЫЙ БРОНЕЭЛЕМЕНТ | 2020 |
|
RU2790459C2 |
ОБОРУДОВАНИЕ ДЛЯ ПОДВОДНОГО ВОЖДЕНИЯ ТАНКА | 2006 |
|
RU2309364C2 |
УНИФИЦИРОВАННАЯ БАШНЯ ТАНКА | 2001 |
|
RU2233418C2 |
Унифицированный боевой модуль танка | 2021 |
|
RU2767813C1 |
БОЕВАЯ МАШИНА С НЕТРАДИЦИОННЫМ РАСПОЛОЖЕНИЕМ ГУСЕНИЧНОГО ДВИЖИТЕЛЯ | 2005 |
|
RU2291373C1 |
Изобретение относится к области техники вооружения, в частности к бронетехнике. Броневая башня содержит основную броню и наружный экран. Наружный экран выполнен из тонких листовых элементов, которые прикреплены установленными по их периметру и жестко закрепленными на основной броне бобышками с термоизоляционными прокладками. Внутри под листовыми элементами установлены дополнительные бобышки для обеспечения воздушного зазора между основной броней и листовыми элементами. Техническим результатом является уменьшение температуры воздуха внутри броневой башни боевой машины при ее эксплуатации в районах с сухим тропическим климатом. 4 ил.
Броневая башня, содержащая основную броню и защитные элементы в виде наружного экрана, отличающаяся тем, что наружный экран выполнен из тонких листовых элементов, прикрепленных установленными по их периметру и жестко закрепленными на основной броне бобышками с термоизоляционными прокладками, а внутри под листовыми элементами установлены дополнительные бобышки для обеспечения воздушного зазора между основной броней и листовыми элементами.
DE 19928370 A1, 21.06.1999 | |||
БРОНИРОВАННАЯ БАШНЯ "ТАЙФУН" БОЕВОЙ МАШИНЫ | 2003 |
|
RU2254546C1 |
БРОНЕВОЙ ЭЛЕМЕНТ | 1999 |
|
RU2169335C2 |
RU 2004108493 A1, 20.09.2005 | |||
DE 10028753, 04.01.2001. |
Авторы
Даты
2008-01-10—Публикация
2005-12-26—Подача