1. Область техники, к которой относится изобретение.
Изобретение относится к методам изготовления полупроводниковых материалов и приборов, в особенности к изготовлению гетероструктур нитридов элементов III группы (далее А3N-структуры) методом газофазной эпитаксии из металлоорганических соединений (метод OMVPE) и таких приборов на их основе, как светоизлучающие диоды, лазеры и, в особенности, белые светодиоды.
2. Описание существующего состояния исследований и разработок.
А3N-полупроводниковые гетероструктуры являются основным материалом для разработок и производства высокоэффективных светоизлучающих диодов и лазеров в видимой и ультрафиолетовой областях оптического спектра излучения, в том числе белых светодиодов. В работе [1] была предложена конструкция белого светодиода на основе p-n AlGalnN гетероструктуры синего цвета свечения с покрытием из стоксовского люминофора на основе алюмоиттриевого граната, преобразующего часть синего излучения в излучение желтой области спектра. В результате сложения этих двух спектров может быть получен спектр белого цвета свечения с определенными координатами цветности. Известны три основных конструкции белых светодиодов, принципиально отличающихся друг от друга:
- светодиоды на основе кристалла синего цвета свечения с покрытием из стоксовского люминофора, преобразующего часть синего излучения в излучение желтой области спектра;
- светодиоды на основе ультрафиолетового излучающего кристалла с покрытием из стоксовского люминофора, преобразующего это излучение в излучение в красной, зеленой и синей областях спектра (RGB-система);
- полноцветные светодиоды, содержащие три отдельных кристалла, излучающих в красной, зеленой и синей областях спектра (RGB-система).
Несмотря на различие, улучшение параметров всех перечисленных типов белых светодиодов требует совершенствования методов получения эпитаксиальных А3N-гетероструктур и увеличения квантового выхода излучения люминофоров.
Для массового производства светоизлучающих диодов наиболее предпочтительным методом изготовления А3N-гетероструктур является метод газофазной эпитаксии из металлоорганических соединений (OMVPE) [2]. В качестве подложек для А3N-эпитаксиальных структур используют сапфир, гексагональный карбид кремния, нитрид галлия и нитрид алюминия. Наибольшее применение получили самые дешевые сапфировые подложки. Подложки карбида кремния (6H-SiC) в несколько раз дороже сапфировых подложек и поэтому применяются не так часто. Близкими к идеальным являются подложки из нитрида алюминия или нитрида галлия, но их массовое производство пока еще отсутствует.
Типичные А3N-гетероструктуры для светоизпучающих диодов содержат следующие функциональные части:
- монокристаллическая подложка из сапфира или карбида кремния, поверхность которой является кристаллографической с-плоскостью (0001), определяющей кристаллографический тип эпитаксиальных А3N-слоев, например их вюрцитную структуру и азимутальную ориентацию кристаллографической решетки;
- эпитаксиальные слои широкозонных эмиттеров, как правило, имеющие состав AlXGa1-XN с проводимостью n- и р-типа. Широкозонные эмиттеры обеспечивают эффективную инжекцию электронов и дырок и их пространственное ограничение в активной области гетероструктуры;
- активная область, содержащая, как правило, набор слоев из узкозонных материалов, таких как InXGa1-XN, которые обычно не легируют;
- контактных эпитаксиальных слоев, как правило, GaN n- и р-типа проводимости, обеспечивающих низкое удельное сопротивление омических контактов и высокую проводимость в плоскости слоев для лучшего растекания тока.
В А3N-эпитаксиальных гетероструктурах, предназначенных для различных приборов, в особенности для светодиодов и лазеров, плотность дефектов (дислокации, дефектов упаковки и др.), а также величина механических напряжений должны быть, по-возможности, сведены к минимуму. Для сравнения, лазерные гетероструктуры на основе GaAs имеют плотность дислокации, не превышающую значений 102-103 см-2.
В А3N-гетероструктурах существуют, в основном, два источника дефектов, первый из которых относится к несоответствию параметров решеток подложки и А3N-слоев, а второй - к рассогласованию параметров решеток слоев внутри гетероструктуры, например между слоями GaN и AlXGa1-XN или GaN и InXGa1-XN. При использования подложек из GaN или AIN вклад первого источника дефектообразования уменьшается и сравним со вторым источником.
Монокристаллические слои с вюрцитной структурой нитрида алюминия (w-AIN, а=0,311 нм), нитрида галлия (w-GaN, a=0,316 нм) и нитрида индия (w-InN, а=0,354 нм), выращиваемые на монокристаллических подложках сапфира, ориентированных в плоскости (0001), (α-Al2О3, параметр кислородной субрешетки а=0,275 нм) или карбида кремния 6H-SiC, (а=0,308 нм), всегда содержат высокую плотность дефектов, в основном дислокаций. Дислокации образуются на границе раздела подложка - эпитаксиальный слой, потому что имеется существенное превышение параметров решетки эпитаксиальных слоев над параметром решетки подложки (несоответствие до 16%), и дислокации прорастают через слои гетероструктуры. В типичных гетероструктурах AlGalnN для голубых и зеленых светодиодов, выращенных на сапфировых подложках, плотность дислокации составляет 108-1010 см-2. Для аналогичных гетероструктур на подложках карбида кремния плотность дислокации составляет 107-109 см-2. Таким образом, вклад первого источника дефектообразования определяется уровнем 107-107 см-2, вклад второго источника дислокации внутри гетероструктуры составляет 106-107 см-2. вание AlXGa1-XN-слоев вызывается несоответствием параметров решеток GaN и AlN (несоответствие 3,5%) и их коэффициентов термического расширения. Для частичного решения этих проблем используют два метода. В первом из них перед выращиванием AlGaN слоя, например, n-эмиттера, выращивают тонкий (0,1 мкм) In0,1Ga0,9N-слой для предотвращения растрескивания последующего AlХGa1-ХN-слоя (x=0,15-0,20). По второму методу вместо объемного AlXGa1-X N (n-эмиттер)-слоя выращивают множественную квантовую напряженную сверхрешетку AlGaN/GaN с толщиной каждого слоя сверхрешетки порядка 0,25 нм.
Уменьшение плотности дислокаций, проникающих в (0001) гетероструктуру, выращиваемую на подложках сапфира или карбида кремния, может быть достигнуто путем использования специальной технологии быстрой продольной эпитаксии (LEO-технология). В этой технологии, как обычно, при низкой температуре выращивается тонкий буферный слой GaN. Затем на поверхность структуры наносят пленку SiO2 или Si3N4, в этой пленке вытравливают узкие длинные окна, параллельные друг другу, до буферного слоя и затем в следующем процессе эпитаксии выращивают толстый слой GaN при высокой температуре, который быстро разрастается по поверхности SiO2 или Si3N4 и на котором в этом же процессе выращивается требуемая А3N-гетероструктура. Легко видеть, что LEO-технология значительно сложнее и более трудоемкая, чем обычная технология эпитаксии.
Теоретические и, частично, экспериментальные исследования предсказывают преимущество использования неполярных (далее а-А3N) гетероструктур в целом ряде приборов, в особенности в светодиодах и лазерах. По сравнению с обычными полярными гетероструктурами, выращенными в полярном с-направлении [0001], в а-А3N-неполярных гетероструктурах отсутствуют сильные электростатические поля в направлении роста. Благодаря этому в активной области а-A3N-неполярных гетероструктур отсутствует пространственное разделение инжектированных электронов и дырок и, как следствие, ожидается увеличение внутреннего квантового выхода излучения у светодиодов и лазеров, изготовленных на их основе. Выращиванию а-А3N-неполярных гетероструктур посвящен целый ряд публикаций [3]. В источнике [4] описан рост a-GaN (1120) пленки на подложках r-плоскости (1102) сапфира. В [4] упоминается возможность выращивания а-А3N-неполярных эпитаксиальных гетероструктур на основе соединений и твердых растворов нитридов элементов III группы, включающей газофазное осаждение одного или более слоев гетероструктур, представленных формулой AlXGa1-XN, где 0<х≥1, на подложках сапфира. Данный способ является наиболее близким к изобретению.
Таким образом, выращивание а-А3N-неполярных гетероструктур с малым количеством структурных дефектов является весьма актуальным направлением для решения проблем увеличения квантового выхода и срока службы светодиодов и лазеров.
Краткое описание изобретения
Технический результат изобретения заключается в получении неполярных эпитаксиальных гетероструктур с низкой плотностью дефектов для использования этих структур в производстве белых светоизлучающих диодов. Для чего на выращенную структуру синего цвета свечения наносят слой стоксовского люминофора на основе алюмоиттриевого граната, преобразующего часть синего излучения в излучение в желтой области спектра. В результате сложения этих двух спектров (синего и желтого) получают спектр белого цвета свечения с определенными координатами цветности. Технический результат изобретения достигается методом выращивания неполярных эпитаксиальных гетероструктур для белых светодиодов на основе соединений и твердых растворов нитридов элементов III группы. Для снижения плотности дислокации на границе раздела подложка - эпитаксиальный слой газофазным осаждением одного или более слоев гетероструктур, представленных формулой AlXGa1-XN, где 0<x≥1, в качестве подложки использовали а-подложку лангасита - a-La3Ga5SiO14, рассогласованием с-параметров решетки подложка - эпитаксиальный слой AlXGa1-XN не более чем в пределах от -2,3% при х=1 до+1,7% при х=0 и рассогласованием коэффициентов теплового расширения в направлении вдоль оси с не более чем в пределах от +46% при х=1 до -11% при х=0. При этом существуют особые значения величины х, при которых рассогласование с-параметров решетки подложка - эпитаксиальный слой AlXGa1-XN или рассогласование коэффициентов теплового расширения в направлении вдоль оси с отсутствует (таблица 1). Для изготовления гетероструктур, позволяющих получение белого цвета свечения без применения люминофора, подложка лангасита легируется специальными примесями, позволяющими конвертировать часть мощности синего спектра излучения гетероструктуры (λMAX=455 нм) в желтый спектр люминесценции подложки, состав подложки при этом соответствует формуле La3-x-yCexPryGa5SiO14. С целью достижения равномерного распределения цветовой температуры и увеличения мощности белого излучения наращиваются буферные слои лангасита, легированные Се и Pr, на подложках Si, Al2О3, Ge с последующим наращиванием светодиодной структуры А3N, включая наращивание слоя лангасита на поверхность А3N светодиодной структуры.
Краткое описание чертежей.
Прилагаемые чертежи и таблицы, включенные в состав заявки на изобретение, дают подробное описание преимуществ изобретения и помогают понять его суть.
Фиг.1 представляет схематический вид светоизлучающей гетероструктуры, соответствующей обычному методу выращивания А3N-гетероструктур (прототип).
Фиг.2 представляет схематический вид светоизлучающей А3N-гетероструктуры на подложке лангасита.
Фиг.3 представляет схематический вид светоизлучающей А3N-гетероструктуры на подложке лангасита и дополнительным слоем лангасита, легированного Се и Pr, выращенного на поверхности А3N-гетероструктуры.
Фиг.4 представляет спектр излучения эмиттера белого светодиода на подложке лангасита, легированного Се и Pr.
Пример осуществления изобретения.
Настоящее изобретение описывается ниже со ссылками на чертежи.
На Фиг.1 представлена схематически типичная светодиодная гетероструктура и показан профиль изменения ширины запрещенной зоны по слоям гетероструктуры, соответствующая источникам информации [5]; в состав которой входит дополнительно слой n-lnxGa1-XN, выращиваемый для предотвращения растрескивания последующего слоя n-AlGaN (3), выращиваемого перед структурой множественных квантоворазмерных ям lnXGa1-XN/lnYGa1-YN (4).
На Фиг.2 в соответствии с настоящей заявкой схематически представлена светодиодная гетероструктура, выращенная на подложке лангасита, и показан профиль изменения ширины запрещенной зоны по ее слоям. В отличие от структуры, изображенной на Фиг.1, в предлагаемой структуре отсутствуют слой n-lnXGa1-XN (4) и слой p-GaN (8), являющийся волноводным слоем. Применение волноводных слоев наиболее эффективно в лазерных диодах, а не в светодиодах. Для выращивания светодиодной гетероструктуры подложка лангасита (1), ориентированная в а-плоскости и имеющая совершенную поверхностную обработку (Ra<0,5 nm), помещается в реактор установки OMVPE в условиях обеспыленной азотной окружающей атмосферы. После продувки объема реактора чистым азотом, а затем водородом, давление в реакторе снижается до рабочего уровня около 70 мбар. Затем графитовый подложкодержатель с подложкой нагреваются до 1050°С. После нагрева в течение 15 минут при скорости потока водорода 15 л/мин в реактор вводится аммиак с расходом 5 л/мин. В этом состоянии производится выдержка 5 минут, после чего мощность высокочастотного нагрева уменьшается, и в течение 6 минут температура подложкодержателя стабилизируется на уровне 530°С. Затем, для того чтобы вырастить GaN буферный слой (2), в реактор через раздельное инжекционное сопло вводится поток триметилгаллия с расходом 4·10-5 мол/мин в течение 50 секунд. В результате вырастает буферный слой GaN толщиной 15 nm. Затем температура подложкодержателя очень быстро поднимается до 1030°С. Триметилгаллий (ТМГ) с силаном (SiH4), используемым в качестве источника донорной примеси, вводится в реактор с расходом ТМГ порядка 7·10-5 мол/мин. Расход силановой газовой смеси подбирается экспериментально для достижения величины уровня легирования слоя GaN порядка 2·1018 см-3.3a время порядка 35 минут вырастает слой GaN (3) толщиной 3,2 мкм. Затем включается источник триметилалюминия (ТМА), его расход линейно увеличивается от 0 до 1·10-5 мол/мин в течение 5 мин. В результате вырастает слой n-AlXGa1-XN (x<0,15) (5) с толщиной 0,5 мкм и с градиентом состава по алюминию. После этого подачу ТМГ, ТМА и SiH4 прекращают и температуру подложкодержателя в течении 5 минут резко снижают до 860°С, а затем включают подачу ТМГ и триметилиндия (ТМИ) и выращивают слои InXGa1-XN/lnyGa1-yN (6), образующие множественные квантовые ямы, периодически переключая потоки ТМИ между расходами 7·10-6 мол/мин и 3·10-5 мол/мин. Продолжительность подачи ТМИ с более высоким расходом составляет 3 секунды, а с меньшим расходом 16 секунд. Затем температура подложкодержателя в течение 5 минут поднимается до 1030°С, и потоки ТМГ и ТМА снова вводятся в реактор. Во время роста слоев AlGaN (9) и GaN (10) в качестве источника акцепторной примеси для получения р-типа проводимости используется бис-циклопентадиелин магния с расходом, достаточным для легирования слоев до уровня концентрации примеси порядка 3·1018 cm-3, обеспечивающей малое удельное сопротивление контактного GaN р-слоя (10).
Промышленная применимость
А3N-гетероструктуры, выращенные в соответствии с методом, изложенном в настоящей заявке на патент, имеют более низкую плотность дефектов, чем структуры, выращенные обычным методом, и не имеют микротрещин. Плотность дислокации в гетероструктурах, изображенных на Фиг.2, составляет не более 5·107 см-2. Кристаллы излучателей имеют белый цвет свечения с хроматическими координатами Х=0,31, Y=0,31.
Список литературы
1. Sh.Yoshinori at al., Patent Number US 5998925, 07.12.1999.
2. Sh. Nakamura, Crystal Growth Method For Gallium Nitride - Based Compound Semiconductor, Patent Number US 5290393, 01.03.1994.
3. W.H.Sun, at al., Applied Physics Letters, Volume 83, Number 13, 29 September 2003.
4. M.Craven at al., Dislocation reduction in non-polar gallium nitride thin films, Patent Number US 6900070, May 31, 2005.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления гетероэпитаксиальных слоев III-N соединений на монокристаллическом кремнии со слоем 3C-SiC | 2020 |
|
RU2750295C1 |
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ПРИБОР С ПОРИСТЫМ БУФЕРНЫМ СЛОЕМ | 2009 |
|
RU2402837C1 |
Светоизлучающий диод на кремниевой подложке | 2021 |
|
RU2755933C1 |
БЕЛЫЙ СВЕТОИЗЛУЧАЮЩИЙ ДИОД НА ОСНОВЕ НИТРИДА МЕТАЛЛА ГРУППЫ III | 2005 |
|
RU2379787C2 |
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ НИТРИДОВ ТРЕТЬЕЙ ГРУППЫ НА СЛОИСТОЙ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ | 2013 |
|
RU2543215C2 |
СВЕТОИЗЛУЧАЮЩИЙ ДИОД | 2003 |
|
RU2231171C1 |
СВЕТОДИОДНАЯ ГЕТЕРОСТРУКТУРА | 2008 |
|
RU2381596C1 |
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ЭЛЕМЕНТ | 2010 |
|
RU2456711C1 |
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ НИТРИДА ТРЕТЬЕЙ ГРУППЫ НА РОСТОВОЙ ПОДЛОЖКЕ | 2013 |
|
RU2543212C2 |
ПОЛУПРОВОДНИКОВАЯ СВЕТОИЗЛУЧАЮЩАЯ ГЕТЕРОСТРУКТУРА | 2008 |
|
RU2370857C1 |
Изобретение относится к технологии изготовления полупроводниковых материалов и приборов методом газофазной эпитаксии из металлоорганических соединений, а именно к изготовлению гетероструктур на основе элементов III группы и приборов на их основе, таких как белые светодиоды, лазеры и т.д. Метод выращивания неполярных эпитаксиальных гетероструктур для белых светоизлучающих диодов на основе соединений и твердых растворов нитридов элементов III группы включает газофазное осаждение одного или более слоев гетероструктур, представленных формулой AlXGa1-XN, где 0<х≤1, на подложку, в качестве которой используют подложку а-лангасита - a-La3Ga5SiO14, с рассогласованием с-параметров решетки «подложка - эпитаксиальный слой AlXGa1-XN, не более чем в пределах от -2,3% при х=1 до +1,7% при х=0 и рассогласованием коэффициентов теплового расширения в направлении вдоль оси с не более чем в пределах от +49% при х=1 до -11% при х=0. Изобретение позволяет получать гетороструктуры с низкой плотностью дефектов и механических напряжений. 5 з.п. ф-лы, 1 табл. 4 ил.
WO 03089696 A1, 30.10.2003 | |||
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ИСТОЧНИК СВЕТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) | 2002 |
|
RU2233013C2 |
JP 9221392 А, 26.08.1997 | |||
US 5290393 А, 01.03.1994 | |||
US 5993542 А, 30.11.1999 | |||
US 5909036 А, 01.06.1999. |
Авторы
Даты
2008-01-20—Публикация
2006-02-06—Подача