СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ Российский патент 2008 года по МПК H01L21/363 

Описание патента на изобретение RU2318269C1

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия.

Известен способ изготовления полупроводниковых приборов [Патент РФ №1424634, МПК Н01L 21/363. Способ радиационной обработки транзисторов. / Белецкий П.Н., Вайсбурд Д.И., Орлов В.М., Чмух В.Н, Шемендюк А.П. - Заявл. 12.01.1987, Опубл. БИПМ №11, 20.04.2000 г.], суть которого заключается в облучении полупроводниковых пластин с транзисторными приборными структурами на основе кремния флюенсами протонов от 7·1013 см-2 до 25·1013 см-2, при этом пробег протонов должен быть не менее толщины пластины, и в проведении последующей термообработки при 400-450°С в течение 20-30 мин.

Данный способ невозможно использовать при изготовлении приборов на основе арсенида галлия.

Известен способ изготовления полупроводниковых приборов [Гусятинер М.С., Горбачев А.И. Полупроводниковые сверхвысокочастотные диоды. - М.: Радио и связь, 1983. - 224 с. (прототип)], включающий операции формирования контактов, фотолитографии, скрайбирования полупроводниковых пластин на отдельные кристаллы и термокомпрессионной сборки в корпус.

Недостатком данного способа изготовления приборов на основе арсенида галлия является то, что даже незначительные отклонения от оптимальных режимов, используемых технологических операций (особенно, таких как скрайбирование и термокомпрессионная сборка приборов), приводят к введению дефектов в активные слои исходного арсенида галлия и, следовательно, к деградации параметров приборов и появлению технологического брака, который выявляется путем проведения различных технологических испытаний.

Следствием указанных выше процессов является снижение общего процента выхода годных изделий и, следовательно, снижение общей эффективности производства приборов.

Задачей, на решение которой направлено заявляемое изобретение, является снижение технологического брака и повышение эффективности производства приборов с заданными параметрами.

Поставленная задача решается тем, что в известном способе изготовления приборов на основе арсенида галлия, включающем формирование контактов, фотолитографию, скрайбирование пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, после сборки в корпус проводят облучение протонами с энергией в интервале от 10 МэВ до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 Рад (GaAs) до 1·106 Рад (GaAs), а после облучения проводят термическую обработку при температуре 200±20°С в течение 30-60 мин.

Изложенное выше изобретение обеспечивают следующий положительный эффект. При такой радиационной обработке восстанавливаются полностью или частично электрофизические характеристики исходного арсенида галлия, которые деградировали в результате действия технологических факторов, что позволяет полностью или частично исключить деградацию соответствующих параметров приборов. Существенное снижение или полное отсутствие деградации параметров приборов в результате действия технологических факторов позволяет существенно снизить процент брака, выявляемого при технологических испытаниях, и за счет этого повысить общую эффективность производства приборов на основе арсенида галлия.

При использовании энергии протонов менее 10 МэВ эффект восстановления электрофизических характеристик арсенида галлия, которые деградировали в результате действия технологических факторов в процессе изготовления приборов, полностью исчезает.

При энергии протонов более 60 МэВ наблюдается процесс насыщения степени восстановления электрофизических характеристик арсенида галлия, поэтому использование протонов с энергией выше этого предела теряет смысл.

Использование дозы облучения менее 1·105 Рад (GaAs) не позволяет существенным образом восстановить электрофизические характеристики арсенида галлия, которые деградировали в результате действия технологических факторов в процессе изготовления приборов, а применение дозы облучения более 1·106 Рад (GaAs) приводит к дополнительной деградации электрофизических характеристик арсенида галлия за счет введения заметного количества радиационных дефектов.

Использование температуры менее +180°С при последующей термической обработке не позволяет стабилизировать параметры приборов, подвергнутых облучению, в то время как использование температуры более +220°С может приводить к дополнительной деградации параметров приборов.

Процесс стабилизации структуры дефектов полностью завершается при термическом отжиге при температуре 200±20°С в течение 30-60 минут, и при дальнейшем отжиге параметры приборов остаются неизменными.

Физическая сущность предлагаемого способа заключается в следующем.

В результате действия технологических факторов в процессе изготовления приборов в активные слои приборов на основе арсенида галлия вводятся различные дефекты. В частности, термокомпрессионная сборка приводит к введению дислокации, а скрайбирование пластин на отдельные кристаллы приводит к появлению микротрещин по периферии кристалла. Следствием введения дефектов является деградация электрофизических характеристик исходного арсенида галлия и соответствующих параметров приборов.

Предлагаемая радиационная обработка приводит к комплексной перестройке дефектов, вводимых в результате действия технологических факторов, и дефектов, вводимых при облучении. Следствием такой комплексной перестройки дефектов является полное или частичное восстановление электрофизических характеристик арсенида галлия, которые деградировали в процессе изготовления приборов.

Радиационная обработка, в частности, закрепляет дислокации, введенные в результате действия технологических факторов, что исключает их размножение и приводит к остановке деградационных процессов, которые и являются основной причиной брака, выявляемого технологическими испытаниями. Снижение влияния дефектов, вводимых вследствие действия технологических факторов, приводит к снижению деградации параметров материала, снижению вероятности дальнейшего развития деградационных процессов и, следовательно, к снижению содержания технологического брака и повышению общей эффективности производства приборов.

Проведение термообработки после облучения протонами позволяет стабилизировать структуру дефектов в активных слоях приборов и исключить изменение параметров приборов при эксплуатации и хранении.

На фиг.1 показаны зависимости степени восстановления рабочего тока диодов Ганна миллиметрового диапазона длин волн (рабочий ток до облучения нормирован на рабочий ток после облучения) от энергии протонов при облучении дозой 5·105 Рад (GaAs) для двух партий приборов, изготовленных при различных режимах термокомпрессионной сборки. Диоды изготовлены из одной и той же эпитаксиальной структуры арсенида галлия.

На фиг.2 показаны гистограммы распределения диодов Ганна миллиметрового диапазона длин волн, изготовленных без радиационной обработки протонами (1) и с использованием облучения протонами (2) с энергией 60 МэВ дозой 5·105 Рад (GaAs). Диоды изготовлены из одной и той же эпитаксиальной структуры арсенида галлия при использовании идентичных технологических режимов.

Рассмотрим пример реализации предлагаемого способа изготовления полупроводниковых приборов на основе арсенида галлия на примере диодов Ганна миллиметрового диапазона длин волн. По обычной технологии изготавливают контакты к активным слоям эпитаксиальной структуры арсенида галлия (полупроводниковая пластина), используя фотолитографию, формируют мезаструктуры (активные элементы диодов Ганна) на пластине и скрайбируют полупроводниковую пластину на отдельные кристаллы. Используя термокомпрессионную сборку, кристаллы монтируют в металлокерамический корпус. После сборки облучают приборы протонами дозой 5·105 Рад (GaAs). При этом используют протоны с энергией 60 МэВ. Как видно из фиг.1, при энергии протонов менее 10 МэВ эффект восстановления рабочего тока в результате облучения полностью исчезает. С другой стороны, использование энергии протонов более 60 МэВ не целесообразно, поскольку эффект восстановления рабочего тока обнаруживает насыщение.

Изготовленные таким образом диоды Ганна имеют большее среднее значение мощности генерации и, следовательно, получаем больший процент выхода годных. Например, если необходимо изготовить диоды Ганна с мощностью генерации не менее 140 мВт, то при использовании известного способа изготовления приборов для данной эпитаксиальной структуры и данных технологических режимов получаем процент выхода годных (сумма всех диодов с мощностью более 140 мВт) - 40%, а при использовании предлагаемого способа изготовления приборов получаем 100% выход годных приборов по данному параметру.

Проведение термообработки после облучения протонами позволяет стабилизировать во времени параметры приборов, изготовленных по предлагаемому способу.

Таким образом, предлагаемый способ позволяет существенно повысить выход годных приборов на основе арсенида галлия и, следовательно, повысить эффективность их производства. Практическая реализация предлагаемого способа не вызывает затруднений.

Похожие патенты RU2318269C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
  • Матвеев Валерий Семенович
RU2303316C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
RU2318270C1
СПОСОБ ПОВЫШЕНИЯ РАДИАЦИОННОЙ СТОЙКОСТИ ПРИБОРОВ НА ОСНОВЕ АРСЕНИДА ГАЛЛИЯ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
RU2304823C1
СПОСОБ ПОВЫШЕНИЯ РАДИАЦИОННОЙ СТОЙКОСТИ ПРИБОРОВ НА ОСНОВЕ АРСЕНИДА ГАЛЛИЯ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
RU2304824C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
RU2303315C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2006
  • Градобоев Александр Васильевич
  • Рубанов Павел Владимирович
  • Ащеулов Александр Васильевич
RU2303314C1
ВЫСОКОВОЛЬТНЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ БЫСТРОДЕЙСТВУЮЩИЙ ТИРИСТОР С ПОЛЕВЫМ УПРАВЛЕНИЕМ 2010
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
  • Думаневич Анатолий Николаевич
RU2472248C2
КРИСТАЛЛ УЛЬТРАБЫСТРОГО ВЫСОКОВОЛЬТНОГО СИЛЬНОТОЧНОГО АРСЕНИД-ГАЛЛИЕВОГО ДИОДА 2009
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
  • Думаневич Анатолий Николаевич
RU2472249C2
Способ создания диодных оптоэлектронных пар, стойких к гамма-нейтронному излучению 2020
  • Лебединская Анастасия Евгеньевна
  • Кабальнов Юрий Аркадьевич
  • Труфанов Алексей Николаевич
RU2739863C1
Способ контроля качества полупроводникового материала 1983
  • Витовский Н.А.
  • Емельяненко О.В.
  • Лагунова Т.С.
  • Машовец Т.В.
  • Рахимов О.
SU1118238A1

Иллюстрации к изобретению RU 2 318 269 C1

Реферат патента 2008 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия. Изобретение обеспечивает снижение технологического брака и повышение эффективности производства приборов с заданными параметрами. Сущность изобретения: в способе изготовления приборов на основе арсенида галлия, включающем формирование контактов, фотолитографию, скрайбирование пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, после сборки в корпус проводят облучение протонами с энергией в интервале от 10 МэВ до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 Рад (GaAs) до 1·106 Рад (GaAs), а после облучения проводят термическую обработку при температуре 200±20°С в течение 30-60 мин. 2 ил.

Формула изобретения RU 2 318 269 C1

Способ изготовления полупроводниковых приборов на основе арсенида галлия, включающий формирование контактов, фотолитографию, скрайбирование полупроводниковых пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, отличающийся тем, что после сборки приборов в корпус проводят облучение протонами с энергией в интервале от 10 до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 до 1·106 Рад (GaAs), а после облучения проводят термическую обработку при температуре 200±20°С в течение 30-60 мин.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318269C1

SU 1424634 A1, 20.04.2000
СПОСОБ ОТЖИГА РАДИАЦИОПНЫХ ДЕФЕКТОВ В ПОЛУПРОВОДНИКЕ 0
SU381300A1
US 3873828 A, 25.03.1975
Ретранслятор с преобразованием частоты 1982
  • Габуев Георгий Владимирович
  • Иванов Дмитрий Исидорович
  • Колоколов Юрий Константинович
  • Хахалкин Вячеслав Николаевич
SU1046950A1
JP 56035487 A, 08.04.1981
JP 56033817 A, 04.04.1981.

RU 2 318 269 C1

Авторы

Градобоев Александр Васильевич

Рубанов Павел Владимирович

Ащеулов Александр Васильевич

Даты

2008-02-27Публикация

2006-07-10Подача