Изобретение относится к области исследований и анализа биологических материалов оптическими средствами и может быть использовано в качестве экспресс-метода лазерной флюоресценции для определения чувствительности микроорганизмов к антимикробным препаратам, например антибиотикам и антисептикам.
Известен способ, реализуемый в оптико-электронном комплексе аналогичного назначения, принятый за прототип [Патент на полезную модель RU 35440 U1, кл. G01N 33/48, 2004].
Способ заключается в одновременном или последовательном воздействиях на пробы с различными антимикробными препаратами лазерным излучением и измерении интенсивности флюоресценции проб с различными антимикробными препаратами, по которым судят о чувствительности микроорганизмов к антимикробным препаратам.
Недостатками известного способа являются недостаточно высокая точность и недостаточно высокая достоверность получаемых результатов. Это связано с зависимостью результатов экспериментов от многих влияющих факторов: стабильности лазерного излучения, загрязнения окружающей среды, напряжения сети, климатических условий и т.п.
Техническим результатом, получаемым от использования изобретения, является повышение точности и достоверности результатов определения чувствительности микроорганизмов к антимикробным препаратам.
Данный технический результат достигается за счет того, что в известном способе заключающемся в одновременном или последовательном воздействиях на пробы с различными антимикробными препаратами лазерным излучением и измерении интенсивности флюоресценции проб с различными антимикробными препаратами, по которым судят о чувствительности микроорганизмов к антимикробным препаратам, лазерное воздействие на пробы с различными антимикробными препаратами повторяют в различные последовательные периоды времени, в которые повторно измеряют интенсивность флюоресценции проб с различными антимикробными препаратами при последующем построении временных зависимостей интенсивностей флюоресценции проб с различными антимикробными препаратами, при этом в те же периоды времени, этим же лазерным излучением проводят воздействия на пробы без антимикробных препаратов, и измеряют интенсивности флюоресценции этих проб с последующим построением временных зависимостей интенсивности флюоресценции проб без антимикробных препаратов, а перед и после проведенных измерений интенсивности флюоресценции проб с антимикробными препаратами и без них проводят воздействие лазерным излучением на опорный образец, не изменяющий свои оптические характеристики во времени, затем интенсивность флюоресценции проб без антимикробных препаратов нормируют на интенсивность флюоресценции опорного образца, затем значения интенсивностей флюоресценции проб с антимикробным препаратом нормируют на значение интенсивностей флюоресценции проб без антимикробных препаратов, после чего сравнивают временные зависимости нормированных интенсивностей флюоресценции проб с антимикробными препаратами и сравнивают временные зависимости интенсивностей флюоресценции проб без антимикробных препаратов, а также интенсивности флюоресценции опорного образца до и после проведенных измерений, и по уменьшению нормированных интенсивностей флюоресценции проб с антимикробными препаратами на заданную величину диагностируют ингибирующее воздействие антимикробного препарата, а по нормированным значениям интенсивности флюоресценции проб без антимикробных препаратов и по постоянству интенсивности флюоресценции опорного образца до и после измерений судят о достоверности полученных результатов диагностирования антимикробных препаратов.
Кроме того, дополнительно лазерным излучением в те же периоды времени воздействуют на антимикробный препарат с физиологическим раствором с последующим измерением интенсивностей флюоресценциии и построением временной зависимости интенсивности флюоресценции антимикробного препарата с физиологическим раствором и по изменению измеренной интенсивности флюоресценции во времени судят об отсутствии загрязнения проб привнесенными микробами.
Пригодность антимикробного препарата к ингибирующему воздействию диагностируют в том случае, если интенсивность флюоресценции антимикробного препарата с физиологическим раствором во времени изменяется не более чем на 20%.
Диагностирование ингибирующего воздействия антимикробного препарата проводят при уменьшении нормированной интенсивности флюоресценции проб с антимикробным препаратом не менее чем на 30%.
О достоверности полученных результатов судят по постоянству интенсивности флюоресценции опорного образца с относительным изменением не более 10%.
Облучение проб с антимикробным препаратом и без него, а также пробы антимикробного препарата с физиологическим раствором и опорного образца осуществляют путем расположения проб и опорного образца в массиве ячеек с последующим сканированием лазерного луча по массиву ячеек.
Опорный образец с постоянными оптическими характеристиками выполнен в виде пластины из флюоресцирующего цветного стекла.
Изобретение поясняется чертежом, на котором представлена схема устройства для реализации способа.
Устройство содержит оптически согласованные лазер 1, оптический фильтр 2 на длину волны лазерного излучения, передающие и приемные оптические волокна 3, 4 и измеритель интенсивности флюоресценции, выполненный, например, в виде спектрометра 5.
Имеется также планшета 6 с серией проб 7 с различными антимикробными препаратами.
Рядом с планшетой 6 располагают опорный образец 8 с постоянными оптическими характеристиками (неизменными во времени). Опорный образец 8 может быть выполнен, например, в виде пластины из флюоресцирующего цветного стекла.
Одна из секций планшеты 6, содержащая антимикробные препараты и одну ячейку без препарата, вместо пробы может быть заполненна физиологическим раствором, например раствором Рингера-Локка.
Выход передающего волокна 3 и вход приемного волокна 4 оптически согласованы с ячейками планшеты 6.
Имеется также устройство 9 сканирования планшеты 6 относительно оптических волокон 3, 4 и система 10 обработки полученной информации, выполненная в виде компьютера, работающего по заранее заданной программе.
Выход спектрометра 5 соединен с входом системы 10 обработки, соединенной с входом устройства 9 сканирования.
Способ реализуется следующим образом.
Излучение от лазера 1 через оптический фильтр 2 и передающее волокно 3 воздействует сначала на опорный образец 8, флюоресценция которого по приемному волокну 4 направляется на спектрометр 5 и фиксируется в системе 10 обработки.
При этом интенсивность лазерного излучения и длительность его воздействия на пробы выбирается таким образом, чтобы за время лазерного воздействия на пробу интенсивность флюоресценции пробы не изменялась вследствие этого воздействия более чем на 2-5%.
Далее по программе устройством сканирования 9 планшета 6, содержащая пробы 7 с антимикробными препаратами и пробы без антимикробных препаратов, и опорный образец 8 позиционируются относительно оптических волокон 3, 4. Сканирование повторяют в различные моменты времени.
В спектрометре 5 последовательно измеряются интенсивности флюоресценции проб с антимикробными препаратами и без них.
Затем после окончания экспериментов вновь воздействуют лазерным излучением на опорный образец и вновь измеряют интенсивность его флюоресценции.
Способ основан на том, что уменьшение интенсивности флюоресценции адекватно уменьшению концентрации микроорганизмов в пробе.
При этом на абсолютные значения интенсивности флюоресценции могут оказывать влияние самые различные амплитудные факторы: изменение интенсивности лазерного излучения, случайные загрязнения среды, климатические условия (температура, давление, влажность), разъюстировка оптической системы, изменение электрического напряжения, влияющее на чувствительность электронной части спектрометра и т.п.
Для исключения влияния амплитудных факторов на результаты испытаний интенсивность флюоресценции проб без антимикробного препарата нормируют на интенсивность флюоресценции опорного образца, не подверженного влиянию амплитудных факторов.
Затем результаты интенсивностей флюоресценции проб с антимикробным препаратом нормируют на соответствующие значения интенсивностей флюоресценции проб без антимикробного препарата. При этом влияние амплитудных факторов исключаются.
В системе 10 обработки информации проводится не только сравнение нормированных интенсивностей флюоресценции проб с антимикробными препаратами и без них, но и осуществляется проверка постоянства интенсивности флюоресценции опорного образца до и после проводимых измерений.
Это дает возможность убедиться в том, что в процессе измерения такие влияющие амплитудные факторы как интенсивность лазерного излучения, чувствительность спектрометра, согласование оптических элементов и т.п. остались неизменными.
В процессе подготовки к измерениям и при проведении экспериментов (манипуляций с планшетой и физиологическим раствором) в исследуемую среду могут быть привнесены различные загрязнения, искажающие достоверность получаемых результатов. Для их исключения лазерным излучением в те же периоды времени дополнительно воздействуют на секцию планшеты 6, заполненную физиологическим раствором.
По изменению интенсивности флюоресценции физиологического раствора во времени, не более чем на 20% судят об отсутствии искажений исследуемой среды привнесенными микробами.
Ингибирующее воздействие антимикробного препарата на микроорганизмы диагностируются в том случае, если значение интенсивности флюоресценции проб с антимикробным препаратом уменьшилось по сравнению с значением интенсивности флюоресценции проб без антимикробного препарата не менее чем на 30%.
При этом о достоверности полученных результатов судят по постоянству интенсивности флюоресценции опорного образца с относительным изменением не более 10%.
Таким образом учет влияющего действия амплитудных факторов позволяет повысить точность и достоверность получаемых результатов по чувствительности микроорганизмов к антимикробным препаратам. Этим достигается поставленный технический результат.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫБОРА ПРЕДПОЧТИТЕЛЬНОГО ЛЕЧЕБНОГО ПРЕПАРАТА И ОЦЕНКИ ЭФФЕКТИВНОСТИ ЕГО ИСПОЛЬЗОВАНИЯ ПРИ РЕАБИЛИТАЦИИ БОЛЬНОГО | 2010 |
|
RU2485503C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ МИКРООРГАНИЗМОВ РОДА Salmonella К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ | 2012 |
|
RU2518372C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ И ИДЕНТИФИКАЦИИ БИОЛОГИЧЕСКИХ МИКРООБЪЕКТОВ И ИХ НАНОКОМПОНЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2406078C2 |
Способ лечения опухолевых и воспалительных заболеваний с применением фотодинамической терапии | 2018 |
|
RU2700407C1 |
Способ дифференциальной и ранней диагностики заболеваний ЛОР-органов воспалительной и опухолевой этиологии с использованием раман-флюоресцентной спектрометрии | 2018 |
|
RU2726062C2 |
СПОСОБ ОЦЕНКИ КАЧЕСТВА ОБРАБОТКИ КОРНЕВЫХ КАНАЛОВ ЗУБА ПРИ ЭНДОДОНТИЧЕСКОМ ЛЕЧЕНИИ | 2007 |
|
RU2381766C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГИБЕЛИ ЖИВЫХ МИКРОБОВ | 2007 |
|
RU2396352C2 |
ПРЕЦИЗИОННЫЙ СПОСОБ СРАВНИТЕЛЬНОЙ ЭКСПРЕСС-ОЦЕНКИ ЭФФЕКТИВНОСТИ АНТИМИКРОБНЫХ ВЕЩЕСТВ В ОТНОШЕНИИ УСЛОВНО ПАТОГЕННОГО ВИДА Pseudomonas aeruginosa | 2021 |
|
RU2760788C1 |
Способ контроля лучевой прочности оптических изделий и устройство для его осуществления | 1989 |
|
SU1778632A1 |
Способ экспресс-диагностики воспалительных заболеваний глотки с использованием флюоресцентной спектрометрии и специального алгоритма для оценки морфометрических, метаболических, функциональных изменений тканей в динамике | 2018 |
|
RU2716593C1 |
Изобретение относится к области исследований и анализа биологических материалов оптическими средствами. Сущность способа заключается в том, что на пробы с различными антимикробными препаратами воздействуют лазерным излучением и измеряют интенсивность флюоресценции проб в различные интервалы времени. В те же интервалы времени воздействуют лазерным излучением на пробы без антимикробных препаратов и измеряют интенсивность флюоресценции проб без антимикробных препаратов. Затем осуществляют сравнение интенсивности флюоресценции проб с антимикробными препаратами, нормированных на соответствующие интенсивности флюоресценции проб без антимикробных препаратов. При уменьшении нормированной интенсивности флюоресценции проб с антимикробными препаратами на определенную величину диагностируют ингибирующее воздействие антимикробных препаратов на микроорганизмы. Для исключения влияния амплитудных факторов на результаты диагностирования дополнительно лазерным облучением воздействуют на опорный образец и измеряют его интенсивность флюоресценции. Затем нормируют значения интенсивности флюоресценции проб без антимикробных препаратов на интенсивность флюоресценции опорного образца. Использование способа позволяет повысить точность и достоверность результатов определения чувствительности микроорганизмов к антимикробным препаратам 6 з.п. ф-лы, 1 ил.
Прибор для определения размеров деталей | 1933 |
|
SU35440A1 |
АЛЕКСАНДРОВ М.Т | |||
и др | |||
Лазерная флюоресцентная диагностика в медицине, пищевой промышленности, экологии | |||
Электроника: наука, технология, бизнес, 2003, №3, с.54-60 | |||
ТИТОВА С.Н | |||
Экспересс-метод оценки эффективности лечения гнойной раны на основе применения лазерно-флюоресцентной фотометрии | |||
Стоматология для всех | |||
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Авторы
Даты
2008-04-10—Публикация
2006-10-12—Подача