ДЕКОМПРЕССОР Российский патент 2008 года по МПК F01L13/08 

Описание патента на изобретение RU2322590C2

Предлагаемое изобретение относится к области повышения нефтеотдачи пластов при эксплуатации нефтегазовых скважин, оборудованных штанговыми глубинными насосами и устройствами для откачки жидкости и газа из скважины.

Известен способ разработки месторождения углеводорода с подошвенной водой и добычи углеводорода штанговым насос-компрессором с раздельным приемом углеводорода и воды, по способу устанавливают насос-компрессор таким образом, чтобы выходное отверстие хвостовика располагалось ниже подошвы пласта. Предварительно осуществляют разрушение конуса воды в призабойной зоне пласта путем откачки воды через хвостовик, соединенный с нижним всасывающим клапаном цилиндра насос-компрессора, и по затрубному пространству через боковой всасывающий клапан цилиндра насос-компрессора. При увеличении в откачиваемой жидкости содержания углеводорода делают вывод о начале разрушения конуса воды. Продолжают откачку до разрушения эмульсии в конусе воды, образующейся в неоднородной пористой среде пласта на принципах углеводород-вода и вода-углеводород, расслоения потоков воды и углеводородов и приведения текущего водоуглеродного контакта к первоначальному положению. Затем в процессе добычи продолжают откачивать воду через хвостовик, а углеводород - по затрубному пространству (1).

Недостатком указанного способа является отсутствие возможности откачки попутного газа из затрубного пространства скважины.

Известно устройство для регулирования отбора жидкости в процессе эксплуатации скважины, содержащее насос, установленные по длине колоны НКТ дополнительные регулирующие узлы, число которых соответствует числу продуктивных пластов скважины, и дополнительные пакеры, разобщающие пласты между собой, причем управляющий и гидравлический исполнительный клапаны установлены в корпусе с зазором для обеспечения гидравлической связи между регулирующими узлами и насосом, приемные патрубки каждого гидравлического исполнительного клапана, число которых соответствует числу входных окон корпуса регулирующего узла, установлены в упомянутых окнах и сообщаются с соответствующим межпаркерным пространством, а выпускные патрубки упомянутых клапанов сообщены с выходными патрубками корпусов, управляющий клапан регулирующих узлов выполнен в виде пилотного электромагнитного клапана, связанного по входу посредством приемного патрубка с муфтой, установленной на выходе насоса, а его выпускной патрубок присоединен к полости сервомеханизма гидравлического исполнительного клапана и дросселю сброса жидкости из вышеуказанной полости, который установлен на соединительном патрубке между управляющим и гидравлическим исполнительным клапанами, при этом система управления включает установленные в приемных патрубках гидравлического исполнительного клапана датчики обводненности, связанные кабельной линией с блоком питания и управления, размещенным на устье скважины, выход которого подключен к обмоткам каждого пилотного электромагнитного клапана (2).

Недостатком указанного устройства является невозможность повышения коэффициента наполнения штангового глубинного насоса посредством снижения избыточного давления в затрубном пространстве нефтегазовой скважины.

Наиболее близким решением является устройство для добычи нефти, содержащее колонну обсадных труб с концентрично размещенной в ней колонной лифтовых труб с паркером и средством для откачки нефти и воды в виде однопорошневого насоса. В цилиндре насоса выполнены перекрытые обратными клапанами впускные каналы, расположенные равномерно по высоте. В поршне выполнен сквозной клапан, перекрытый клапанным узлом, реагирующим на плотность окружающей среды. Клапанный узел выполнен в виде взаимодействующих между собой дроссельной катушки и датчиков. Катушка связана с поршнем, а датчики размещены в пространстве между колонной обсадных труб. При ходе поршня вниз до крайнего положения через клапан вначале поступает нефть, а затем - вода. Перемещение поршня вверх начинается при открытом клапане. Открытое положение клапана вплоть до подхода поршня к границе раздела нефть-вода поддерживается по сигналу датчика. При перекрытии клапана в колонну через клапан откачивается нефть (3).

Недостатком указанного устройства является отсутствие возможности повышения динамического уровня нефти, посредством снижения избыточного давления в затрубном пространстве нефтегазовой скважины.

Задачей предлагаемого изобретения является повышение нефтеотдачи пласта, вследствие повышения динамического уровня нефти, посредством снижения избыточного давления в затрубном пространстве нефтегазовой скважины.

Поставленная задача решается декомпрессором, состоящим из цилиндра с поршнем, блока клапанов, линией всасывания и линией нагнетания, в котором блок клапанов выполнен из двух симметричных частей, в которых клапаны содержат регулировку усилия пружин, пропорциональную нагрузке на клапан от давления разрежения, создаваемого поршнем цилиндра на тактах всасывания и нагнетания соответственно.

На Фиг.1 изображен общий вид декомпрессора на скважине, на Фиг.2 изображен общий вид декомпрессора, на Фиг.3 - разрез А-А, на Фиг.4 - выносной элемент Б, на Фиг.5 - схема работы декомпрессора, на Фиг.6 - схема работы декомпрессора.

Станок-качалка 1 на скважине 2 приводит в движение штанговый глубинный насос 3 (ШГН). Нефть из пласта 4 поднимается по НКТ 5, арматуре 6, трубопроводной задвижке 7 в нефтяной напорный трубопровод 8. В затрубном пространстве 9 образуется избыточное давление попутного газа. Боковая (затрубная) задвижка 10 соединяется в конструкции арматуры 6 с затрубным пространством 9. Декомпрессор 11 прикреплен нижней частью, посредством шарнирного соединения, к опоре станка-качалки 1. Верхняя часть декомпрессора 11 крепится, посредством шарнирного соединения, к коромыслу станка-качалки 1. Внешний фланец боковой задвижки 10 соединен гибким трубопроводом 12 с линией всасывания 13 декомпрессора 11. Линия нагнетания 14 декомпрессора 11 соединяется гибким трубопроводом 15 с нефтяным напорным трубопроводом 8 посредством вентиля 16. Давление газа в затрубном пространстве 9 контролируется манометром 17, расположенным на арматуре 6.

Декомпрессор 11 состоит из цилиндра 18 с поршнем 19, блока клапанов 20. Компенсатор длины 21 имеет нижнее шарнирное соединение 22 со штоком 23 и верхнее шарнирное соединение 24 с коромыслом станка-качалки. Нижняя часть цилиндра 18 имеет шарнирное соединение с опорой станка-качалки. Линия всасывания 13 и линия нагнетания 14 смонтированы на корпусе блока клапанов 20, имеющего неподвижное соединение с наружной поверхностью цилиндра 18. Блок клапанов состоит из левой части 25 и правой части 26. Левая часть 25 содержит клапан всасывания 27, подпружиненный пружиной 28, седло клапана всасывания 29, кронштейн клапана 30, пакеты регулировочных шайб 31, клапан нагнетания 32, подпружиненный пружиной 33, седло клапана 34, штуцер всасывания 35, штуцер нагнетания 36, штуцер подключения 37 к цилиндру 18, посредством гибкого трубопровода 38. Правая часть 26 имеет аналогичную с левой частью 25 конструкцию, за исключением наличия штуцера подключения 39 к цилиндру 18, посредством гибкого трубопровода 40.

Декомпрессор работает следующим образом.

При движении вверх коромысла станка-качалки 1, поршень 19 также перемещается вверх. В нижней полости 41 цилиндра 18 создается разрежение, выражающееся в уменьшении давления газа относительно давления в затрубном пространстве 9.

Клапан 27 в левой части 25 (фиг.5) открывается, преодолевая усилия пружины 32. Между клапаном всасывания 27 и седлом клапана всасывания 29 образуется зазор 42, через который газ из затрубного пространства 9 поступает в нижнюю полость 41 цилиндра 18. Одновременно в верхней полости 43 цилиндра 18 создается избыточное давление газа, которое передается в правую часть 26 на клапан нагнетания 32, и он открывается, преодолевая усилия пружины 33. Между клапанами нагнетания 32 и седлом клапана 34 образуется зазор 44, через который газ из верхней полости 43 поступает в нефтяной напорный трубопровод 8. Одновременно избыточное давление газа из верхней полости 43 дополнительно способствует закрытию клапана всасывания 27 в правой части 26. Одновременно избыточное давление из нефтяного напорного трубопровода 8 дополнительно способствует закрытию клапана нагнетания 32 в левой части 25.

При движении вниз коромысла станка-качалки 1, поршень 19 также перемещается вниз. В верхней полости 43 цилиндра 18 создается разрежение, а в нижней полости 41 - избыточное давление. Клапан 27 в правой части 26 (фиг.6) открывается с образованием зазора 45. Дальнейшая работа в левой части 25 и правой части 26 аналогична приведенной ранее работе, за исключением образования зазора 46 между клапаном нагнетания 32 и седлом клапана 34 в левой части 25, а также отсутствуют зазоры 42 и 44.

Постоянное движение вверх и вниз коромысла станка-качалки 1 приводит к откачиванию избыточного давления газа из затрубного пространства 9 и нагнетанию откачанного газа в напорную магистраль нефтепровода 8. Снижение избыточного давления в затрубном пространстве 9 регистрируется по манометру 17.

Для долговременной и надежной работы декомпрессора 11 предусмотрены в его конструкции пакеты регулировочных шайб 31, предназначенные для изменения усилия пружины 28 и 33 соответственно клапанам 27 и 32. Избыточное давление в затрубном пространстве 9 может иметь различные значения в различных скважинах - это зависит от месторождения, глубины залегания пласта, его газового фактора и т.д. Поэтому наличие пакета регулировочных шайб 31 способствует использованию декомпрессора 11 на различных нефтяных месторождениях.

Декомпрессор прошел промысловые испытания в ОАО НК "Роснефть-Краснодарнефтегаз", месторождение Ахтырское, с положительными результатами.

Источники информации

1. Патент №2247228, МПК7, КЕ21В 43/12, 04.09.2003.

2. Патент №32191, МПК7, КЕ21В 43/14, 26.05.2003.

3. Патент №1340264, МПК6, KE21В 43/14, 08.10.1985.

Похожие патенты RU2322590C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОТВОДА ГАЗА ИЗ ЗАТРУБНОГО ПРОСТРАНСТВА НЕФТЯНОЙ СКВАЖИНЫ 2014
  • Валеев Асгар Маратович
  • Фаткуллин Салават Миргасимович
  • Севастьянов Александр Владимирович
  • Нигай Юрий Валентинович
  • Ахметзянов Руслан Маликович
RU2567571C1
СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ НА МЕСТОРОЖДЕНИИ УГЛЕВОДОРОДОВ С ПОДОШВЕННОЙ ВОДОЙ И ДОБЫЧИ НЕФТИ И ВОДЫ НАСОС-КОМПРЕССОРАМИ С РАЗДЕЛЬНЫМ ПРИЕМОМ ДЛЯ БЕСКОНУСНОЙ ЭКСПЛУАТАЦИИ СКВАЖИНЫ 2005
  • Клюшин Иван Яковлевич
  • Клюшин Александр Иванович
RU2293214C2
УСТРОЙСТВО ДЛЯ ОТКАЧКИ ГАЗА ИЗ ЗАТРУБНОГО ПРОСТРАНСТВА 2022
  • Уразаков Камил Рахматуллович
  • Белозеров Виктор Владимирович
  • Газаров Аленик Григорьевич
  • Молчанова Вероника Александровна
RU2788026C1
СПОСОБ СКВАЖИННОЙ ДОБЫЧИ НЕФТИ 2023
  • Петраковский Денис Валериевич
RU2812819C1
НАСОСНАЯ УСТАНОВКА ДЛЯ ОТКАЧКИ ГАЗА ИЗ ЗАТРУБНОГО ПРОСТРАНСТВА НЕФТЯНОЙ СКВАЖИНЫ 2016
  • Валеев Мурад Давлетович
  • Ахметзянов Руслан Маликович
  • Шаменин Денис Валерьевич
  • Багаутдинов Марсель Азатович
RU2630490C1
Способ добычи нефти с повышенным содержанием газа из скважин и устройство для его осуществления 2017
  • Корабельников Михаил Иванович
  • Корабельников Александр Михайлович
RU2667182C1
СПОСОБ НАСОСНОЙ ДОБЫЧИ НЕФТИ С ВЫСОКИМ ГАЗОВЫМ ФАКТОРОМ 2016
  • Валеев Мурад Давлетович
  • Рамазанов Габибян Салихьянович
  • Низамов Динар Ильгизович
  • Ганеева Светлана Магнавиевна
RU2627797C1
Глубиннонасосная установка для добычи нефти 1973
  • Рабинович Аврам Менделевич
SU536313A1
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДА С ПОДОШВЕННОЙ ВОДОЙ И ДОБЫЧИ УГЛЕВОДОРОДА ШТАНГОВЫМ НАСОС-КОМПРЕССОРОМ С РАЗДЕЛЬНЫМ ПРИЕМОМ УГЛЕВОДОРОДА И ВОДЫ 2003
  • Клюшин И.Я.
RU2247228C2
СПОСОБ ФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ ПРИ РАЗРАБОТКЕ УГЛЕВОДОРОДНОЙ ЗАЛЕЖИ И СКВАЖИННАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Дыбленко Валерий Петрович
  • Лысенков Александр Петрович
  • Ащепков Юрий Сергеевич
  • Лукьянов Юрий Викторович
  • Белобоков Дмитрий Михайлович
RU2366806C1

Иллюстрации к изобретению RU 2 322 590 C2

Реферат патента 2008 года ДЕКОМПРЕССОР

Декомпрессор относится к области повышения нефтеотдачи пластов при эксплуатации нефтегазовых скважин, оборудованных штанговыми глубинными насосами и устройствами для откачки жидкости и газа из скважины. Состоит из цилиндра с поршнем, блока клапанов, линии всасывания и линии нагнетания. Блок клапанов выполнен из двух симметричных частей, в которых клапаны содержат регулировку усилия пружин, пропорциональную нагрузке на клапан от давления разрежения, создаваемого поршнем цилиндра на тактах всасывания и нагнетания соответственно. 6 ил.

Формула изобретения RU 2 322 590 C2

Декомпрессор, состоящий из цилиндра с поршнем, блока клапанов, линии всасывания и линии нагнетания, отличающийся тем, что блок клапанов выполнен из двух симметричных частей, в которых клапаны содержат регулировку усилия пружин, пропорциональную нагрузке на клапан от давления разрежения, создаваемого поршнем цилиндра на тактах всасывания и нагнетания соответственно.

Документы, цитированные в отчете о поиске Патент 2008 года RU2322590C2

RU 1340264 A1, 20.07.1996
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДА С ПОДОШВЕННОЙ ВОДОЙ И ДОБЫЧИ УГЛЕВОДОРОДА ШТАНГОВЫМ НАСОС-КОМПРЕССОРОМ С РАЗДЕЛЬНЫМ ПРИЕМОМ УГЛЕВОДОРОДА И ВОДЫ 2003
  • Клюшин И.Я.
RU2247228C2
Устройство для измерения температур лезвия режущего инструмента при обработке металлов 1931
  • Урушев В.М.
SU32191A1
Узел ввода реагента в магистральный трубопровод и способ замены форсунки ввода реагента в магистральный трубопровод с использованием узла ввода реагента 2020
  • Беляев Андрей Юрьевич
RU2748632C1
ДАТЧИК ДАВЛЕНИЯ И СПОСОБ ЕГО СНЯТИЯ С ОБЪЕКТА 1985
  • Белозубов Е.М.
  • Педоренко Н.П.
  • Демченко О.И.
RU2039346C1

RU 2 322 590 C2

Авторы

Ковалев Николай Иванович

Гилаев Гани Гайсинович

Климовец Владимир Николаевич

Миносян Сергей Артемович

Колотий Михаил Алексеевич

Гладышев Александр Борисович

Плавинский Александр Вячеславович

Балашов Владимир Анатольевич

Даты

2008-04-20Публикация

2006-02-14Подача