Изобретение относится к области космонавтики и космической техники, а именно к двигателям космических аппаратов.
В настоящее время известно несколько типов ракетных двигателей для космических аппаратов. Так, наибольшее развитие получили жидкостные ракетные двигатели на высокоэффективных химических топливах (например, «водород + кислород»), в которых разгон продуктов сгорания осуществляется газодинамическими силами. Такие двигатели имеют ограниченные значения удельного импульса, определяемые температурой и давлением в камере сгорания, на уровне до 450 с.
Известны [1] гибридные электрохимические ракетные двигатели. Эти двигатели занимают промежуточное положение между высокоэффективными жидкостными ракетными двигателями и электрическими (электродуговыми) ракетными двигателями. В них используются двухкомпонентные химические топлива (например, «водород + кислород»), которые предварительно подогреваются электрическим током. Соответственно, такой двигатель выполнен в виде последовательно соединенных модуля подогрева топлива, конструктивно подобного электродуговому ракетному двигателю, и камеры сгорания с реактивным соплом. Такие электрохимические двигатели обеспечивают получение удельного импульса на уровне от 600 до 1400 с.
Несмотря на преимущество известных электрохимических ракетных двигателей по сравнению с жидкостными ракетными двигателями, их основным недостатком является необходимость наличия на борту космического аппарата дополнительного мощного источника электрической энергии, например ядерной энергоустановки.
Целью изобретения является повышение эффективности (удельного импульса) ракетного двигателя до уровня известных электрохимических ракетных двигателей и выше без использования дополнительного источника энергии.
Указанная цель достигается тем, что в состав комбинированного электрохимического ракетного двигателя дополнительно входит электрохимический генератор, выполненный в виде электрохимического реактора на базе высокотемпературных топливных элементов, работающих на компонентах ракетного топлива, с преобразователем тока. Двигатель содержит последовательно соединенные камеру предварительного сжигания топлива с избытком горючего, электрохимический генератор, и электрический ракетный двигатель, например электродуговой ракетный двигатель. Питание электрического ракетного двигателя осуществляется от преобразователя тока электрохимического генератора. Для дополнительного повышения температуры продуктов сгорания топлива между электрохимическим реактором электрохимического генератора и электрическим ракетным двигателем дополнительно выполнена камера дожигания ракетного топлива, в которую подается необходимое количество окислителя.
На чертеже представлена схема двигателя.
Комбинированный электрохимический ракетный двигатель состоит из камеры предварительного подогрева топлива 1, электрохимического генератора 2, камеры дожигания 3 и электродугового ракетного двигателя 4. Электрохимический генератор 2 состоит из электрохимического реактора 5 и преобразователя тока 6. Электрохимический реактор 5 выполнен на базе высокотемпературных топливных элементов, работающих на компонентах применяемого ракетного топлива, например на топливе «водород + кислород».
Двигатель работает следующим образом. В камеру предварительного подогрева топлива 1 подаются компоненты топлива в таком соотношении, чтобы температура продуктов их сгорания была достаточна для работы топливных элементов. В результате их горения в камере 1 образуются продукты сгорания с избытком горючего, поступающие затем в электрохимический реактор 5 электрохимического генератора 2. Подогрев окислителя до необходимой температуры может осуществляться, например, при использовании его для охлаждения стенок камеры 1 или электрохимического реактора 5. В результате электрохимической реакции между горючим, содержащимся в продуктах сгорания из камеры 1 и окислителем, происходящей в топливных элементах, вырабатывается электрический ток. Продукты реакции из реактора 5 с температурой около 1000К, также содержащие избыток горючего, далее подаются в камеру дожигания 3, в которую в необходимом количестве подается окислитель. Продукты дожигания из камеры дожигания 3 поступают в электродуговой ракетный двигатель 4. Электрическая энергия, вырабатываемая в электрохимическом реакторе 5, подается от электрохимического генератора 2 к электродуговому ракетному двигателю 4 через преобразователь 6. После дальнейшего разогрева продуктов сгорания в электродуговом ракетном двигателе 4 они истекают через сопло электродугового ракетного двигателя 4, создавая тягу. Вместо электродугового ракетного двигателя в составе комбинированного электрохимического ракетного двигателя также может быть использован электрический ракетный двигатель другого типа, например сильноточный магнитоплазмодинамический ракетный двигатель, в этом случае ускорение продуктов сгорания в нем осуществляется не только газодинамическими, но и электромагнитными силами.
В зависимости от режима работы двигателя может изменяться расход окислителя, подаваемого в камеру дожигания, а также электрическая мощность электрохимического генератора. Кроме питания электроэнергией электрического ракетного двигателя, может осуществляться питание вырабатываемой электроэнергией бортовых потребителей космического аппарата.
Комбинированный электрохимический ракетный двигатель может найти применение в качестве двигателя космических аппаратов для межорбитальных перелетов, а также для полетов к Луне и планетам. Одним из преимуществ такого двигателя по сравнению с известными двигательными установками с ядерными источниками электроэнергии [2], является его экологическая безопасность - отсутствие возможности заражения атмосферы и околоземного пространства радиоактивными материалами.
Источники информации
1. С.Д.Гришин, Л.В.Лесков. Электрические ракетные двигатели космических аппаратов. - М.: Машиностроение, 1989 г. - 216 с., стр.173-174.
2. Там же, стр.199-201.
название | год | авторы | номер документа |
---|---|---|---|
КОМБИНИРОВАННЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2006 |
|
RU2328616C1 |
КОМБИНИРОВАННЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) | 2006 |
|
RU2334893C1 |
МИКРОТУРБИНА | 2007 |
|
RU2334113C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОКРАТНОГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) | 2008 |
|
RU2364742C1 |
ГИБРИДНЫЙ ТУРБОРЕАКТИВНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ | 2012 |
|
RU2511829C2 |
ГИБРИДНЫЙ РАКЕТНО-ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ АЭРОКОСМИЧЕСКИЙ ДВИГАТЕЛЬ | 2014 |
|
RU2563641C2 |
СПОСОБ ЭНЕРГООБЕСПЕЧЕНИЯ КОСМИЧЕСКИХ АППАРАТОВ-НАКОПИТЕЛЕЙ | 2010 |
|
RU2451631C1 |
ЭНЕРГОБЕЗОПАСНАЯ КОМБИНИРОВАННАЯ СИЛОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2024 |
|
RU2826039C1 |
СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ЭНЕРГОУСТАНОВКИ ДЛЯ СОВМЕСТНОЙ ВЫРАБОТКИ ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ | 2001 |
|
RU2206777C1 |
СПОСОБ СОЗДАНИЯ ЭЛЕКТРОРЕАКТИВНОЙ ТЯГИ | 2016 |
|
RU2633075C1 |
Изобретение относится к области космонавтики и космической техники, а именно к двигателям космических аппаратов. Комбинированный электрохимический ракетный двигатель (КЭХРД) содержит последовательно соединенные: камеру предварительного подогрева топлива электрохимический генератор (ЭХГ), выполненный в виде электрохимического реактора (ЭХР) на базе высокотемпературных топливных элементов, работающих на компонентах ракетного топлива, с преобразователем тока; и электрический ракетный двигатель (ЭРД), например электродуговой ракетный двигатель. Питание ЭРД осуществляется от преобразователя тока ЭХГ. Между ЭХГ и ЭРД дополнительно может быть установлена камера дожигания топлива (КС2). Изобретение обеспечивает повышение эффективности (удельного импульса) двигателя. 1 з.п. ф-лы, 1 ил.
Гришин С.Д | |||
и др | |||
Электрические ракетные двигатели космических аппаратов | |||
- М.: Машиностроение, 1989, с.173-174 | |||
СИСТЕМА ПОДАЧИ РАКЕТНОГО ТОПЛИВА К МАЛОМОЩНОМУ ЭЛЕКТРОДУГОВОМУ РЕАКТИВНОМУ ДВИГАТЕЛЮ И СПОСОБ ПОДАЧИ ТОПЛИВА | 1996 |
|
RU2166666C2 |
СПОСОБ РЕГУЛИРОВАНИЯ СООТНОШЕНИЯ КОМПОНЕНТОВ ТОПЛИВА В ГИБРИДНОМ РАКЕТНОМ ДВИГАТЕЛЕ | 2004 |
|
RU2274761C2 |
US 2002078680 А, 27.06.2002 | |||
US 4866929 А, 19.09.1989 | |||
Пресс для получения пищевого растительного масла | 2016 |
|
RU2642476C1 |
ПРОИЗВОДНЫЕ 2-АМИНОПИРИДИНА, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ И СПОСОБ ЛЕЧЕНИЯ | 2001 |
|
RU2250898C2 |
Авторы
Даты
2008-06-10—Публикация
2006-12-21—Подача