СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДОВ НА КРИСТАЛЛАХ АНТИМОНИДА ИНДИЯ n-ТИПА ПРОВОДИМОСТИ Российский патент 2008 года по МПК H01L31/18 H01L21/265 

Описание патента на изобретение RU2331950C1

Предлагаемое изобретение относится к технологии изготовления полупроводниковых приборов, чувствительных к инфракрасному излучению, в частности одно- и многоэлементных фотодиодов (ФД) на кристаллах антимонида индия (InSb), и может быть использовано при изготовлении линейных и матричных приемников излучения.

Известен способ изготовления фотодиодов на антимониде индия, включающий подготовку поверхности исходной пластины антимонида индия, формирование локального р-n перехода на подложке антимонида индия имплантацией ионов бериллия с последующим отжигом, анодное окисление для формирования защитной диэлектрической пленки, нанесение пассивирующего диэлектрика и формирование контактной системы (см. пат. РФ 1589963, МПК 6 Н01L 31/18, 1996 г.). Однако этот способ не позволяет изготавливать фотодиоды с наивысшей токовой чувствительностью.

Известен наиболее близкий по технической сущности к предлагаемому способ изготовления фотодиодов на антимониде индия, включающий формирование р-n перехода на подложке антимонида индия имплантацией ионов бериллия с энергией ионов 20-100 кэВ и дозой 5·1011-6·1014 см-2 с импульсным постимплантационным отжигом излучением галогенных ламп, анодное окисление, нанесение пленки SiOx термическим распылением и металлизацию, причем в качестве исходных используют кристаллы с концентрацией легирующей примеси 1013-1016 см-3 (см. пат. РФ 2056671, МПК 6 Н01L 21/265, 1996 г.). Однако этот способ также не позволяет изготавливать фотодиоды с наивысшей токовой чувствительностью.

Техническим результатом при использовании предлагаемого способа является увеличение токовой чувствительности фотодиодов на InSb.

Технический результат достигается тем, что в способе изготовления фотодиодов на кристаллах антимонида индия n-типа проводимости, включающем подготовку пластины исходного кристалла антимонида индия, формирование р-n перехода имплантацией ионов бериллия с постимплантационным отжигом, нанесение защитной и пассивирующей диэлектрических пленок и формирование контактной системы, согласно изобретению используют пластины исходного кристалла антимонида индия с концентрацией примеси 6·1013-2·1014 см-3, имплантацию ионов бериллия производят при энергии 20-40 кэВ и дозе имплантации (0,8-1,2)·1014 см-2, постимплантационный отжиг производят стационарно при температуре 350-375°С в течение 20-30 минут с поверхностной капсулирующей пленкой SiO2.

Диапазоны заявленных концентраций легирующей примеси в исходном материале и режимы имплантации ионов бериллия находятся внутри диапазонов, известных из прототипа значений, однако только в указанном более узком диапазоне значений обеспечивается достижение технического результата, на который ранее не была установлена известность влияния отличительных признаков, поэтому заявленное техническое решение соответствует критерию «изобретательский уровень» (п.19.5.3.(2) «Правил составления, подачи и рассмотрения заявки на выдачу патента на изобретение»).

Технический результат (повышение токовой чувствительности) достигается только при сочетании всех перечисленных условий и диапазонов значений параметров, которые определяются следующими физическими особенностями. ФД на InSb чувствительны к излучению 3-5 мкм, которое поглощается на глубине соответственно 20-50 мкм. Повышение токовой чувствительности Si обусловлено двумя причинами: увеличением значения диффузионной длины дырок (Lp), что позволит диффундировать всем фотоносителям до р-n перехода, расположенного у поверхности на глубине ˜1 мкм, и улучшением структурных свойств самого р-n перехода, что позволит разделить фотоносители р-n переходом без заметных потерь на рекомбинацию. Для обеспечения наибольшего значения Lp выбираются наиболее совершенные кристаллы и такие режимы имплантации и отжига, которые обеспечивают наибольшее совершенство р-n перехода и сохранение исходного значения Lp. В свою очередь наиболее совершенными являются наименее легированные кристаллы (наименьший уровень легирования теллуром промышленных кристаллов n-типа составляет 6·1013 см-3) с предельным уровнем концентрации 2·1014 см-3, превышение которого ухудшает структурные свойства кристалла и уменьшает Lp.

К повышению структурного совершенства р-n переходов на основе InSb, в том числе легированных бериллием, приводит снижение энергии ионов и дозы имплантации, а также использование наиболее совершенных исходных кристаллов. Сохранение свойств исходного кристалла обеспечивается снижением температуры отжига и созданием условий, не допускающих деструкции кристалла за счет испарения летучего компонента - Sb, которому препятствует капсулирующая пленка. Исходя из изложенного выбранный диапазон энергий ионов Ве+ (20-40 кэВ) снизу ограничен малой глубиной залегания р+-n перехода (менее 0,2 мкм), следствием чего является высокое значение слоевого сопротивления, ограничивающего размер площади собирания носителей р+-n переходом, а сверху ограничен началом такого структурного разупорядочения, которое слабо восстанавливается при отжиге. Диапазон доз (0,8-1,2)·1014 см-2 снизу ограничен также высоким сопротивлением р+-слоя из-за низкой степени легирования, а сверху - слабо восстанавливаемым структурным разупорядочением кристалла.

Отжигом, обеспечивающим наибольшие значения Si, является стационарный отжиг при температуре в диапазоне 350-375°С в течение 20-30 минут с капсулирующей пленкой SiO2 на поверхности кристалла. При этом нижняя граница диапазона температур отжига определяется началом ослабления эффекта отжига дефектов, а верхняя граница - началом деструкции поверхности, вызванной отличием значений коэффициента термического расширения (КТР) пленки SiO2 и InSb. В то же время пленка SiO2 является в наибольшей мере отвечающей требованиям соответствия КТР и возможностям технологического применения.

Для определения оптимальных значений режимов операций был проведен ряд экспериментов, в процессе которых были изготовлены 64-элементные линейки ФД с размером элемента фоточувствительной площадки 150×150 мкм2. В качестве исходного материала выбирались пластины InSb, начиная с наименьшего промышленно выпускаемого уровня легирования 6·1013 см-3 и выше, которые проходили подготовку (очистку, промывку и др.) перед имплантацией ионами Be+для формирования р-n перехода. После имплантации на поверхность пластины наносилась капсулирующая пленка SiO2 методом низкотемпературного разложения моносилана, после чего поводились термический отжиг, стравливание капсулирующей пленки, формирование защитной диэлектрической пленки анодным окислением, нанесение пассивирующей пленки SiOx и формирование контактной системы. Изготовленные ФД были смонтированы в фотоприемные устройства, в которых измерялись напряжения сигнала при известной мощности потока излучения. Источником излучения, использованным для измерений, являлось абсолютно черное тело с температурой рабочей полости 373 К. Частота модуляции излучения при измерении выходного сигнала составила 800 Гц, полоса пропускания измерительного тракта - 190 Гц, апертурный угол ФПУ ≥ 60°. На основании данных этих измерений рассчитывалось значение токовой чувствительности в соответствии с ГОСТ 17772-79 (Приемники излучения и устройства приемные полупроводниковые электрические. Методы измерения фотоэлектрических параметров и определения характеристик. Государственный стандарт СССР, 1979). Режимы операций и полученные результаты приведены в таблице.

ТаблицаКонцентрация примеси в исходном кристалле, см-3Энергия ионов бериллия при имплантации, кэВДоза ионов бериллия при имплантации, см-2Температура отжига, °СВремя отжига, минТоковая чувствительность, А/Вт1234567С выходом за пределы заявленных диапазонов значений параметров13·1014200,8·1014350200,26023·1014301,2·1014375250,25434·1014401014360300,25044·1014351014355250,22556·1013180,8·1014350200,23268·1013451014360300,20571014181,2·1014365200,25182·1014451014375300,21496·1013200,7·1014355200,220108·1013250,6·1014365300,239111014301,4·1014370200,215122·1014401,5·1014375300,210136·1013200,8·1014340250,255148·1013301014345250,180151014351014380200,220162·1014401,2·1014385300,216176·1013250,8·1014350180,243188·1013301,2·1014360190,212191014301014370310,260201014351014370320,265В соответствии с заявленными значениями параметров216·1013200,8·1014350200,289226·1013400,8·1014355200,295231014400,8-Ю14360250,285

1234567241014301014365250,299258·1013301014370250,300268·1013201014375300,295272·1014201,2·1014370300,290282·1014401,2·1014360300,305

Из данных таблицы видно, что изготовление фотодиодов на основе InSb предложенным способом в заявленном диапазоне значений режимов операций обеспечивает повышение токовой чувствительности получаемых фотодиодов на ˜10% и более.

Похожие патенты RU2331950C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ P-N-ПЕРЕХОДОВ НА КРИСТАЛЛАХ АНТИМОНИДА ИНДИЯ N-ТИПА ПРОВОДИМОСТИ 1993
  • Астахов В.П.
  • Барбой В.Е.
  • Карпов В.В.
  • Мозжорин Ю.Д.
  • Ермакова И.М.
  • Овчинников А.С.
  • Пасеков В.Ф.
  • Бузуев Ю.И.
  • Постников И.В.
  • Коршунов А.Б.
RU2056671C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДОВ НА АНТИМОНИДЕ ИНДИЯ 2006
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Ежов Виктор Петрович
  • Карпов Владимир Владимирович
  • Крапухин Вячеслав Всеволодович
  • Мануйлова Лидия Константиновна
RU2313853C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЕВ p-ТИПА ПРОВОДИМОСТИ НА КРИСТАЛЛАХ InSb 2012
  • Артамонов Антон Вячеславович
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Максимов Александр Дмитриевич
RU2485629C1
ПЛАНАРНЫЙ ФОТОДИОД НА АНТИМОНИДЕ ИНДИЯ 2011
  • Астахов Владимир Петрович
  • Астахова Галина Сергеевна
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Михайлова Елена Вячеславовна
RU2461914C1
Способ изготовления матричного фотоприемного устройства 2022
  • Мирофянченко Андрей Евгеньевич
  • Мирофянченко Екатерина Васильевна
RU2792707C1
ФОТОДИОД НА АНТИМОНИДЕ ИНДИЯ 2006
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Ежов Виктор Петрович
  • Карпов Владимир Владимирович
  • Соловьёва Галина Сергеевна
RU2324259C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ p- n -ПЕРЕХОДОВ НА КРИСТАЛЛАХ INAS n-ТИПА ПРОВОДИМОСТИ 1993
  • Астахов В.П.
  • Данилов Ю.А.
  • Давыдов В.Н.
  • Лесников В.П.
  • Дудкин В.Ф.
  • Сидорова Г.Ю.
  • Таубкин И.И.
  • Трохин А.С.
RU2045107C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ pin-ФОТОДИОДОВ БОЛЬШОЙ ПЛОЩАДИ НА ВЫСОКООМНОМ p-КРЕМНИИ 2013
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Карпов Владимир Владимирович
  • Евстафьева Наталья Игоревна
  • Карпенко Елена Федоровна
  • Лихачёв Геннадий Михайлович
  • Крайтерман Евгения Зиновьевна
RU2544869C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДА НА АНТИМОНИДЕ ИНДИЯ 2006
  • Астахов Владимир Петрович
  • Гиндин Павел Дмитриевич
  • Ежов Виктор Петрович
  • Карпов Владимир Владимирович
  • Соловьева Галина Сергеевна
RU2313854C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ФОТОДИОДНОЙ МАТРИЦЫ НА АНТИМОНИДЕ ИНДИЯ 1994
  • Туринов Валерий Игнатьевич
RU2069028C1

Реферат патента 2008 года СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДИОДОВ НА КРИСТАЛЛАХ АНТИМОНИДА ИНДИЯ n-ТИПА ПРОВОДИМОСТИ

Способ изготовления фотодиодов на кристаллах антимонида индия n-типа проводимости включает подготовку пластины исходного кристалла антимонида индия, формирование р-n перехода имплантацией ионов бериллия с постимплантационным отжигом, нанесение защитной и пассивирующей диэлектрических пленок и формирование контактной системы. Согласно изобретению используют пластины исходного кристалла антимонида индия с концентрацией примеси 6·1013-2·1014 см-3, имплантацию ионов бериллия производят при энергии 20-40 кэВ и дозе имплантации (0,8-1,2)·1014 см-2, постимплантационный отжиг производят стационарно при температуре 350-375°С в течение 20-30 минут с поверхностной капсулирующей пленкой SiO2. Изобретение обеспечивает увеличение токовой чувствительности фотодиодов на InSb. 1 табл.

Формула изобретения RU 2 331 950 C1

Способ изготовления фотодиодов на кристаллах антимонида индия n-типа проводимости, включающий подготовку пластины исходного кристалла антимонида индия с концентрацией примеси 6·1013-2·1014 см-3, имплантацию ионов бериллия (Ве+) с энергией 20-40 кэВ при дозе 0,8·1014-1,2·1014 см-2, нанесение капсулирующей диэлектрической пленки SiO2, постимплантационный термический отжиг при температуре 350-375°С в течение 20-30 мин, удаление капсулирующей пленки, нанесение защитной и пассивирующей диэлектрических пленок и формирование контактной системы.

Документы, цитированные в отчете о поиске Патент 2008 года RU2331950C1

СПОСОБ ИЗГОТОВЛЕНИЯ P-N-ПЕРЕХОДОВ НА КРИСТАЛЛАХ АНТИМОНИДА ИНДИЯ N-ТИПА ПРОВОДИМОСТИ 1993
  • Астахов В.П.
  • Барбой В.Е.
  • Карпов В.В.
  • Мозжорин Ю.Д.
  • Ермакова И.М.
  • Овчинников А.С.
  • Пасеков В.Ф.
  • Бузуев Ю.И.
  • Постников И.В.
  • Коршунов А.Б.
RU2056671C1
SU 1589963 A1, 10.07.1996
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБРИДНОЙ ФОТОДИОДНОЙ МАТРИЦЫ НА АНТИМОНИДЕ ИНДИЯ 1994
  • Туринов Валерий Игнатьевич
RU2069028C1
Способ изготовления полупроводниковых приборов 1985
  • Белотелов Сергей Владимирович
  • Патрацкий Анатолий Александрович
  • Петров Виктор Николаевич
SU1265894A1
JP 63136579 A, 08.06.1988.

RU 2 331 950 C1

Авторы

Астахов Владимир Петрович

Гиндин Павел Дмитриевич

Евстафьева Наталья Игоревна

Ежов Виктор Петрович

Карпов Владимир Владимирович

Соловьёва Галина Сергеевна

Даты

2008-08-20Публикация

2007-02-13Подача