Изобретение относится к катодной защите подземных сооружений от коррозии и передаче электроэнергии постоянного тока по системе "провод-земля", а именно к заземляющим устройствам постоянного тока, и найдет применение во многих отраслях промышленности.
Известен анодный заземлитель, содержащий электрод из малорастворимого материала, контактный узел (токоввод), выполненный в торцевом отверстии электрода, и размещенную частично в электроде и контактном узле закладную трубку, в которую зачеканен клином соединительный провод. Внешняя поверхность электрода и зона контактного узла залиты компаундом. В контактный узел введен эластичный вкладыш, окружающий конец соединительного провода и место соединения жилы провода с закладной трубкой. Между вкладышем и проводом и между вкладышем и закладной трубкой размещены обтюраторы (центраторы). На соединительный провод в зоне его выхода из компаунда надета полимерная втулка. Эластичный вкладыш служит, по мнению авторов изобретения, для компенсации температурных напряжений в компаунде, что предотвращает отслаивание компаунда от боковой поверхности контактного узла (при понижении температуры) и разрушение электрода в зоне контактного узла за счет расширения компаунда (при повышении температуры). Полимерная втулка служит для предотвращения излома соединительного провода на выходе из электрода (пат. РФ №2149920, кл. C23F 13/00, опубл. 27.05.2000 г. БИ №18).
Недостатками этого заземлителя являются низкая надежность и сложность конструкции токоввода. Это связано с тем, что эластичный вкладыш не предотвращает полностью возможность отслаивания компаунда от стенки контактного узла, так как между вкладышем и стенкой электрода остается часть компаунда в виде кольца, которая при охлаждении сокращается в диаметре. При повышении температуры это кольцо расширяется, создавая разрушающее напряжение на головку электрода в зоне контактного узла (малорастворимые электроды, имея высокую стойкость против анодного растворения, как правило, обладают хрупкостью и низкой механической прочностью). Кроме того, слабым местом является также место контакта компаунда с полимерной изоляцией, по которому из-за низкой адгезии компаунда к изоляции, обычно выполняемой из полиэтилена или поливинилхлорида, может проникнуть вода к контактному узлу.
Наиболее близким по технической сущности к предлагаемому является анодный заземлитель, содержащий малорастворимый железокремниевый электрод с токовводом, выполненным в торцевом цилиндрическом отверстии электрода, в которое вставлен конец кабеля с оголенной жилой, зачеканенной расплавленным свинцом. Отверстие заполнено эпоксидной смолой и закрыто фторопластовой шайбой. Дополнительно вокруг конца электрода с токовводом сформирована крышка из эпоксидной смолы (см. справочник Стрижевского И.В., Зиневича А.М., Никольского К.К. и др. "Защита металлических сооружений от подземной коррозии", М., Недра, 1981, с.196).
Необходимость тщательной изоляции токоввода продиктована тем, что даже ничтожно малая утечка тока с металлических элементов токоввода, выполненных из нестойких против анодного растворения металлов (медь, алюминий, свинец), приводит к их разрушению с образованием продуктов растворения, объем которых в несколько раз превосходит объем растворившегося металла. Вследствие этого, под давлением продуктов растворения дефекты изоляции увеличиваются, что ведет к быстропрогрессирующему разрушению токоввода и выходу из строя заземлителя.
Однако даже при такой изоляции с течением времени из-за старения компаунда и температурных напряжений, возникающих за счет разных коэффициентов теплового расширения материалов электрода и компаунда (коэффициент теплового расширения эпоксидной смолы в 30 раз выше, чем у железокремниевого сплава), в компаунде образуются трещины, а между стенкой отверстия электрода и компаундом открывается щель, по которым влага достигает металлических элементов токоввода.
Задачей изобретения является повышение надежности анодного заземлителя.
Поставленная задача решается тем, что в анодном заземлителе, содержащем электрод из малорастворимого материала, токоввод, выполненный в залитом компаундом торцевом углублении электрода, в котором зачеканена жила соединительного провода, и пробку, закрывающую торцевое углубление, согласно изобретению, компаунд выполнен многослойным, причем слои составлены поочередно из материала, имеющего высокую адгезию к изоляции соединительного провода, и материала, имеющего высокую адгезию к электроду так, что внешним является слой, имеющий высокую адгезию к электроду.
Кроме того, слои компаунда отверждены при температуре, превышающей максимально возможную температуру, до которой может нагреться заземлитель.
Пробка, закрывающая торцевое углубление электрода, выполнена из эластичного материала, скрепленного с электродом и/или соединительным проводом.
На чертеже изображен продольный разрез конца заземлителя, в котором размещен токоввод (вариант с двухслойным компаундом).
Анодный заземлитель состоит из малорастворимого электрода 1, в утолщенном конце которого выполнено торцевое цилиндрическое углубление 2, и закладного металлического стержня 3, концы которого загнуты или сплющены, причем верхний конец стержня выходит в торцевое углубление 2. В торцевое углубление 2 введен конец соединительного провода 4 с загнутой или сплющенной оголенной жилой. Углубление 2 с перекрытием оголенной жилы провода залито расплавленным свинцом 5, выше которого оно последовательно залито слоем 6 компаунда, имеющего высокую адгезию к изоляции провода 4, и слоем 7 компаунда, имеющего высокую адгезию к электроду 1. Углубление закрыто пробкой 8 из эластичного материала, предварительно надетого на конец провода 4. Поверхности соприкосновения пробки с электродом и/или проводом скреплены клеем.
Анодный заземлитель работает следующим образом. От источника постоянного тока, например преобразователя для катодной защиты подземных сооружений от коррозии, по соединительному проводу 4 подается постоянный ток положительной полярности расчетной силы, который через свинцовую заливку 5 перетекает в закладной стержень 3, а от него - в электрод 1. Затем ток стекает со всей поверхности электрода в окружающий грунт и через него втекает в подземное сооружение, обеспечивая его катодную защиту.
Известные компаунды не имеют одинаково высокую адгезию к таким разным по физико-химическим свойствам материалам, как материал малорастворимого электрода (например, железокремниевого сплава - ферросилида, графита, магнетита и т.п.) и материал изоляции соединительного провода (полиэтилен, полипропилен, поливинилхлорид и т.п.). По этой причине влага, насыщающая окружающий заземлитель грунт, может капиллярно просочиться по границе компаунд - электрод или компаунд - провод, где адгезия ниже, к металлическим элементам токоввода. Это может происходить как при повышении температуры окружающей среды, так и при понижении ее. Если адгезия компаунда низка к материалу электрода, то при понижении температуры из-за значительно более высокого коэффициента теплового расширения компаунда относительно материала электрода (например, названный коэффициент для эпоксидный смолы примерно в 30 раз больше, чем у ферросилида) образуется капиллярная щель между компаундом и электродом, по которой вода проникает к металлическим элементам токоввода. Если же адгезия компаунда низка к изоляции провода, то компаунд отрывается от поверхности изоляции при повышении температуры из-за более высокого коэффициента теплового расширения его относительно материала жилы провода (меди или алюминия).
В предлагаемом анодном заземлителе слой 6 выполнен из компаунда, имеющего более высокую адгезию к изоляции провода, чем к электроду, а слой 7 выполнен из компаунда, имеющего более высокую адгезию к электроду, чем к изоляции провода. Поэтому при повышении или понижении температуры отрыв компаунда может происходить не по всей длине провода и боковой стенки углубления электрода, а только в пределах одного из слоев, что предотвращает сквозное просачивание воды к металлическим элементам токоввода.
Для предотвращения механического разрушения электрода в зоне токоввода в результате теплового расширения компаунда отверждение слоев компаунда производят при максимальной возможной температуре, наблюдаемой при хранении, транспортировке, монтаже и эксплуатации заземлителя. Тогда геометрические размеры слоев компаунда будут сформированы при этой температуре и не будут в дальнейшем увеличиваться.
Что касается свинцовой заливки 5, то она при тепловом расширении не может привести к разрушению электрода, так как затвердевает при температуре около 327°С, фиксируя ее максимальные геометрические размеры.
Пример конкретного исполнения.
Анодный заземлитель содержит электрод 1 из железокремнистого сплава (ферросилида) длиной 1500, диаметром 50 мм, утолщенный конец которого имеет длину 150, диаметр 80 мм. В торцевое цилиндрическое углубление 2 глубиной 80, диаметром 40 мм, выполненное в утолщенном конце, введен конец одножильного кабеля марки ВВГ 1×16 с сечением медной жилы 16 мм2, имеющего поливинилхлоридную (ПВХ) изоляцию. Концы закладного стального стержня 3 диаметром 8 мм и жилы кабеля 4 сплющены. Углубление 2 с перекрытием оголенной части жилы кабеля залито расплавленным свинцом 5, которое затем последовательно заполнено слоем 6 силиконового двухкомпонентного компаунда марки Виксинт К-18 (ТУ 38.103508-81), имеющего более высокую адгезию к ПВХ, чем к ферросилиду, и слоем 7 компаунда на основе эпоксидной смолы марки К-115 и отвердителя ПЭПА, имеющего более высокую адгезию к ферросилиду, чем к ПВХ. Углубление закрыто пробкой 8 из силиконового клея марки Пентэласт-1161, имеющего адгезию как к ПВХ, так и к ферросилиду, который после затвердевания сохраняет эластичность.
В качестве компаундов, имеющих более высокую адгезию к ПВХ-изоляции соединительного кабеля, можно использовать различные марки силиконовых компаундов (например, Виксинт К-68, силиконовый клей-герметик Пентэласт-1143), клеи для склеивания изделий из ПВХ (например, Cosmofen CA 12, Cosmofen plus, Koratak, Koracoll и др.).
В качестве компаундов, имеющих более высокую адгезию к материалу металлических и металлооксидных электродов, в наибольшей степени подходят компаунды на основе эпоксидных, фенолоформальдегидных, полиуретановых, полиамидных смол и элементоорганических полимеров. Для графитовых и углеграфитовых электродов рекомендуются компаунды на основе эпоксидных и фенолоформальдегидных смол.
Предлагаемые технические решения предотвращают возможность проникновения влаги к металлическим элементам токоввода, исключая при этом их электрохимическое растворение, и механического разрушения электрода из-за температурных напряжений в токовводе, что повышает в целом надежность и долговечность работы анодного заземлителя.
название | год | авторы | номер документа |
---|---|---|---|
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 2006 |
|
RU2326185C1 |
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 1998 |
|
RU2149920C1 |
ЭЛЕКТРОД АНОДНОГО ЗАЗЕМЛИТЕЛЯ (ВАРИАНТЫ) | 2010 |
|
RU2453634C2 |
Анодный заземлитель | 1987 |
|
SU1516510A1 |
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 2005 |
|
RU2294584C1 |
ТРУБЧАТЫЙ АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 2018 |
|
RU2677199C1 |
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ (ВАРИАНТЫ) | 2000 |
|
RU2176687C1 |
Скважинный анодный заземлитель и способ его сооружения | 1987 |
|
SU1631640A1 |
Анодный заземлитель и способ его изготовления | 1991 |
|
SU1830395A1 |
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 2014 |
|
RU2574618C1 |
Изобретение относится к катодной защите подземных сооружений от коррозии, в частности к заземляющим устройствам постоянного тока, и может быть использовано во многих отраслях промышленности. Анодный заземлитель содержит электрод из малорастворимого материала, токоввод, выполненный в залитом компаундом торцевом углублении электрода, в котором зачеканена жила соединительного провода, и пробку, закрывающую торцевое углубление, при этом компаунд выполнен многослойным, причем слои составлены поочередно из материала, имеющего высокую адгезию к изоляции соединительного провода, и материала, имеющего высокую адгезию к электроду так, что внешним является слой, имеющий высокую адгезию к электроду. Технический результат: повышение надежности анодного заземлителя. 2 з.п. ф-лы, 1 ил.
СТРИЖЕВСКИЙ И.В | |||
и др | |||
Защита металлических сооружений от подземной коррозии | |||
- М.: Недра, 1981, с.196 | |||
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ | 1998 |
|
RU2149920C1 |
Приемник дискретных сигналов | 1978 |
|
SU771889A2 |
Авторы
Даты
2008-09-10—Публикация
2006-09-25—Подача