Изобретение относится к системам теплообмена устройств и средств радиоэлектронной техники.
Известен термоэлектрический модуль [1, 2] с расположением горячих и холодных спаев в двух параллельных плоскостях. Недостатком подобного типа устройств является то, что при получении больших перепадов температур возникает проблема паразитного кондуктивного переноса между горячими и холодными спаями. Увеличение высоты полупроводниковых ветвей приводит к увеличению их сопротивления и, как следствие, к увеличению джоулевых тепловыделений, что также снижает эффективность термоэлектрического модуля. Анализ тепловых процессов в металлических спаях выявляет неоднородность тепловыделения на протяжении спая.
Цель изобретения - получение высокого градиента температур между холодными и горячими спаями термоэлектрического модуля.
Цель достигается за счет расположения полупроводниковых ветвей р-типа и n-типа таким образом, что все ветви р-типа находятся в одной плоскости, а все ветви n-типа в другой параллельной плоскости, поэтому нагретые спаи пространственно отдалены от холодных спаев, что уменьшает паразитные кондуктивные потери между спаями.
Сущностью изобретения является то, что горячие и холодные участки спаев термоэлектрического модуля плотно сконцентрированы для получения более эффективного теплообмена.
На чертеже представлена конструкция термоэлектрического устройства с высоким градиентом температур.
Конструкция термоэлектрического устройства представляет собой полупроводниковые ветви р-типа 1 и n-типа 2, расположенные в разных плоскостях.
Между полупроводниковыми ветвями р-типа 1 и n-типа 2, расположены горячие спаи 3 и холодные спаи 4.
Устройство работает следующим образом.
При пропускании тока возникает чередование горячих 3 и холодных 4 спаев, причем за счет большой длины спаев основной теплообмен происходит в близи перехода между полупроводниковой ветвью и спаем. Это обусловлено тем, что электрический заряд, имеющий ограниченную длину свободного пробега, после одного или двух соударений с кристаллической решеткой металлического спая полностью обменивается с ней энергией. Поэтому нагрев или охлаждение спая будет происходить только с того конца, где электроны попадают в металлический спай из полупроводника.
Использование представленного устройства позволит создать термомодули с высоким градиентом температур за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями, а также за счет более плотной компоновки ветвей, так как поверхность теплообмена будет состоять не из всего металлического спая, а только из его нагретого участка. Кроме того, если середину металлического спая выполнить в виде гибкого провода, то термомодуль сможет формировать горячую и холодную поверхность в любых плоскостях, а не только в параллельных.
Литература
1. Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. - СПб.: Политехника, 2005.
2. Патент РФ № 2136079, 1999. Термоэлектрический модуль / Исмаилов Т.А., Цветков Ю.Н., Сулин А.Б., Аминов Г.И.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО С ТОНКОПЛЕНОЧНЫМИ ПОЛУПРОВОДНИКОВЫМИ ВЕТВЯМИ И УВЕЛИЧЕННОЙ ПОВЕРХНОСТЬЮ ТЕПЛООТВОДА | 2013 |
|
RU2575618C2 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР С ВЫСОКИМ ГРАДИЕНТОМ ТЕМПЕРАТУР МЕЖДУ СПАЯМИ | 2014 |
|
RU2575614C2 |
КАСКАДНОЕ СВЕТОИЗЛУЧАЮЩЕЕ ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО | 2012 |
|
RU2507613C2 |
СПОСОБ ОТВОДА ТЕПЛА ОТ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕКТРОННЫХ КОМПОНЕНТОВ В ВИДЕ ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ НА ОСНОВЕ ДИОДОВ ГАННА | 2014 |
|
RU2558217C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ МЕХАНИЧЕСКИЙ МАНИПУЛЯТОР | 2007 |
|
RU2366830C2 |
СПОСОБ ОТВОДА ТЕПЛА ОТ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕКТРОННЫХ КОМПОНЕНТОВ В ВИДЕ ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ НА ОСНОВЕ ТУННЕЛЬНЫХ ДИОДОВ | 2014 |
|
RU2562746C2 |
СПОСОБ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ ПРИ ПОМОЩИ ТОНКОПЛЕНОЧНОГО ПОЛУПРОВОДНИКОВОГО ТЕРМОЭЛЕКТРИЧЕСКОГО ТЕПЛОВОГО НАСОСА ЦИЛИНДРИЧЕСКОЙ ФОРМЫ | 2014 |
|
RU2575650C2 |
УСТРОЙСТВО ОХЛАЖДЕНИЯ НА ОСНОВЕ НАНОПЛЕНОЧНЫХ ТЕРМОМОДУЛЕЙ | 2014 |
|
RU2565523C2 |
ТОНКОПЛЕНОЧНОЕ ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО СО СБАЛАНСИРОВАННЫМИ ЭЛЕКТРОФИЗИЧЕСКИМИ ПАРАМЕТРАМИ р- И n-ПОЛУПРОВОДНИКОВЫХ ВЕТВЕЙ | 2014 |
|
RU2587435C2 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ ТЕПЛОВОЙ НАСОС С НАНОПЛЕНОЧНЫМИ ПОЛУПРОВОДНИКОВЫМИ ВЕТВЯМИ | 2013 |
|
RU2595911C2 |
(57) Изобретение относится к системам теплообмена устройств и средств радиоэлектронной техники. Технический результат: получение высокого градиента температур за счет уменьшения кондуктивных паразитных потерь между горячими и холодными спаями, а также за счет более плотной компоновки ветвей. Сущность: полупроводниковые ветви р-типа и n-типа расположены таким образом, что все ветви р-типа находятся в одной плоскости, а все ветви n-типа в другой параллельной плоскости. При этом нагретые спаи пространственно отдалены от холодных спаев, что уменьшает паразитные кондуктивные потери между спаями. 1 ил.
Термоэлектрическое устройство с высоким градиентом температур, выполненное из полупроводниковых ветвей р-типа и n-типа таким образом, что все ветви р-типа расположены в одной плоскости, а все ветви n-типа в другой параллельной плоскости, отличающееся тем, что нагретые спаи пространственно отдалены от холодных спаев для уменьшения паразитных кондуктивных потерь между спаями.
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ | 2004 |
|
RU2280919C2 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 1997 |
|
RU2136079C1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Авторы
Даты
2008-10-10—Публикация
2007-04-25—Подача