ПРЕОБРАЗОВАТЕЛЬ СКОРОСТИ С КОМПЕНСАЦИЕЙ ЭЛЕКТРИЧЕСКИХ ПОМЕХ Российский патент 2008 года по МПК G01P5/08 

Описание патента на изобретение RU2338207C1

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды.

Известен измеритель скорости Смита-Слепяна [1, стр.138, рис.47], содержащий электромагнит, образованный сердечником с обмоткой, расположенным у твердой поверхности, например у борта корабля, и два электрода. Электромагнит создает в жидкости, движущейся вдоль твердой поверхности, магнитное поле, что приводит к возникновению в ней э.д.с., которую измеряют как напряжение между электродами.

Известны различные устройства для измерения пульсаций скорости потока электропроводящей жидкости, содержащие магнитную систему, электроды, подключаемые к усилителям (см., например, [2]-[4].

Известно также устройство для измерения пульсаций скорости потока жидкости, которое по технической сущности является наиболее близким к предлагаемому, и выбрано в качестве прототипа [5]. Устройство содержит магнитную систему с рабочей частью, выполненной в виде клина, электроды и измерительный блок, снабженный схемами суммы и разности, к которым подключены электроды.

Недостатком устройства-прототипа, как и всех подобных устройств, является низкая точность измерений при наличии электрических помех в электропроводящей жидкости.

Задачей изобретения является создание устройства, позволяющего производить измерение скорости потока электропроводящей жидкости в условиях высокого уровня электрических помех в жидкости.

Сущность изобретения заключается в том, что в устройстве для измерения скорости потока электропроводящей жидкости магнитная система содержит шесть постоянных магнитов, первый из которых обращен одним из своих полюсов к рабочей поверхности корпуса, образованной покрытием из диэлектрического материала, второй и третий идентичные по конструкции постоянные магниты, расположенные с противоположных сторон от первого постоянного магнита и обращенные к рабочей поверхности корпуса полюсами, полярность которых противоположна полярности полюса первого постоянного магнита, обращенного к рабочей поверхности корпуса, четвертый, пятый и шестой постоянные магниты, расположенные рядом соответственно с первым, вторым и третьим постоянными магнитами и обращенные к рабочей поверхности корпуса полюсами, полярность которых противоположна полярностям обращенных к рабочей поверхности корпуса полюсов соответственно первого, второго и третьего постоянных магнитов, при этом первый электрод расположен между первым и вторым постоянными магнитами, второй электрод расположен между первым и третьим постоянными магнитами, третий электрод расположен между четвертым и пятым постоянными магнитами, четвертый электрод расположен между четвертым и шестым постоянными магнитами, электронный блок содержит первый и второй дифференциальные усилители, первые одноименные входы которых соединены соответственно с первым и третьим электродами, вторые одноименные входы первого и второго дифференциальных усилителей соединены соответственно со вторым и четвертым электродами, третий дифференциальный усилитель, первый и второй входы которого соединены с выходами соответственно первого и второго дифференциальных усилителей, а его выход является выходом устройства.

В предлагаемом устройстве расстояния между электродами преимущественно удовлетворяют соотношениям:

где α12, α34,α13, α24 - расстояния соответственно между первым и вторым, третьим и четвертым, первым и третьим, вторым и четвертым электродами.

Сущность изобретения поясняется чертежами, на которых представлены

фиг.1 - чертеж магнитной системы с электродами;

фиг.2 - разрез по А-А;

фиг.3 - схема, характеризующая взаимное расположение электродов;

фиг.4 - распределение силовых линий в районе расположения первого и второго электродов (в сечении Б-Б).

фиг.5 - распределение силовых линий в районе расположения третьего и четвертого электродов (в сечении В-В);

фиг.6 - электрическая схема устройства.

На фиг.1-6 обозначено:

1,...,6 - постоянные магниты;

7,...,10 - электроды;

11 - корпус;

12 - рабочая поверхность корпуса;

13 - покрытие корпуса из диэлектрического материала;

14, 15 - силовые линии;

16 - электронный блок;

17,...,19 - дифференциальные усилители.

В предлагаемом устройстве для измерения скорости потока электропроводящей жидкости магнитная система содержит шесть постоянных магнитов 1,...,6, закрепленных в корпусе 11, выполненном из немагнитного металла, например титана (см. фиг.1, 2). Форма корпуса 11 может быть самой разнообразной в зависимости от конструкции прибора. На фиг.1-3 изображено устройство, магнитная система которого с электродами 7,...,10 выполнена в корпусе цилиндрической формы. Такая форма корпуса является технологичной как с точки зрения его изготовления, так и с точки зрения выполнения места установки его в прибор. Рабочая поверхность 12 корпуса образована покрытием 13 из диэлектрического материала, в котором выполнены отверстия для электродов 7,...,10. В качестве диэлектрического материала может быть использован эпоксидный компаунд. Под рабочей поверхностью 12 понимается поверхность, вдоль которой протекает поток электропроводящей жидкости. Рабочая поверхность 12 имеет преимущественно плоскую форму, но в общем случае может иметь и выпуклую форму.

Постоянные магниты 1,...,6 имеют преимущественно форму прямоугольного параллелепипеда. Их изготавливают из магнитотвердого материала, например Nd-Fe-B.

Первый постоянный магнит 1 обращен одним из своих полюсов, в частности полюсом S, к рабочей поверхности 12, образованной покрытием 13 из диэлектрического материала. Второй и третий идентичные по конструкции и параметрам постоянные магниты 2 и 3 расположены с противоположных сторон от первого постоянного магнита 1 и обращены к рабочей поверхности 12 полюсами N, полярность которых противоположна полярности полюса S первого постоянного магнита 1, обращенного к рабочей поверхности 12.

Четвертый, пятый и шестой постоянные магниты 4, 5 и 6 расположены рядом соответственно с первым, вторым и третьим постоянными магнитами 1, 2 и 3 и обращены к рабочей поверхности корпуса полюсами N, S и S, полярность которых противоположна полярностям обращенных к рабочей поверхности корпуса полюсов S, N и N соответственно первого, второго и третьего постоянных магнитов 1, 2 и 3. Конструкции постоянных магнитов 4, 5 и 6 идентичны конструкциям соответственно первого, второго и третьего постоянных магнитов 1, 2 и 3.

Электроды 7,...,10 изготовлены преимущественно из круглой платиновой проволоки и имеет чернение своих торцевых поверхностей, непосредственно контактирующих с электропроводящей жидкостью, в целях уменьшения переходного сопротивления электрод - жидкость. Первый электрод 7 расположен между первым и вторым постоянными магнитами 1 и 2. Второй электрод 8 расположен между первым и третьим постоянными магнитами 1 и 3. Третий электрод 9 расположен между четвертым и пятым постоянными магнитами 4 и 5. Четвертый электрод 10 расположен между четвертым и шестым постоянными магнитами 4 и 6.

В предлагаемом устройстве расстояния между электродами преимущественно удовлетворяют соотношениям (1) и (2). В этом случае электроды находятся в вершинах прямоугольника (см. фиг.3). При этом достигается максимальное подавление электрической помехи. Расстояния α12, α34,α13, α24 могут измеряться как между центрами электродов, так и между их ближайшими точками.

Электронный блок 16 (см. фиг.6) содержит первый и второй дифференциальные усилители 17 и 18, первые одноименные входы которых, в частности неинвертирующие входы, соединены соответственно с первым и третьим электродами 7 и 9. Вторые одноименные входы, в частности инвертирующие входы, первого и второго дифференциальных усилителей 17 и 18 соединены соответственно со вторым и четвертым электродами 8 и 10, а также третий дифференциальный усилитель 19, первый и второй входы которого соединены с выходами соответственно первого и второго дифференциальных усилителей 17 и 18, а выход является выходом устройства. К какому из конкретных входов (инвертирующему или неинвертирующему) усилителя 19 подключены выходы дифференциальных усилителей 17 и 18, не имеет значения. Компенсация электрической помехи происходит в любом варианте. Меняется только знак выходного сигнала.

Предлагаемое устройство работает следующим образом. Поток электропроводящей жидкости, например морской воды, движется вдоль поверхности 12. Под действием магнитного поля (см. фиг.4, 5) в движущейся электропроводящей жидкости создается электрическое поле, напряженность которого пропорциональна скорости движения жидкости и напряженности магнитного поля. На электродах 7 и 8, размещенных на поверхности 12, индуцируются электрические потенциалы, пропорциональные скорости движения жидкости. Разность потенциалов между электродами 7 и 8 определяется разностями потенциалов между точками, лежащими на нормалях к поверхности 12 и проходящих через точку соприкосновения электродов 7 и 8 с жидкостью. Если в электропроводящей среде имеется электрическая помеха, то на электродах 7 и 8 с полезным сигналом, пропорциональным скорости потока жидкости, суммируется сигнал электрической помехи, пропорциональный напряженности электрического поля помехи и расстоянию между электродами 7 и 8. Напряжение между электродами 7 и 8 поступает на входы дифференциального усилителя 17, в котором сигнал усиливается и поступает на один из входов усилителя 19.

Одновременно на электродах 9 и 10, размещенных на поверхности 12, индуцируются электрические потенциалы, пропорциональные скорости движения жидкости. Разность потенциалов между электродами 9 и 10 определяется разностями потенциалов между точками, лежащими на нормалях к поверхности 12, и проходящих через точку соприкосновения электродов 9 и 10 с жидкостью. При идентичности параметров магнитов 1 и 4, а также магнитов 2, 3, 5 и 6, полезный сигнал на электродах 9 и 10, пропорциональный скорости потока жидкости, будет равен полезному сигналу на электродах 7 и 8, но иметь противоположный знак, так как силовые линии 14 в области расположения электродов 7 и 8 и силовые линии 15 в области расположения электродов 9 и 10 имеют противоположную направленность (см. фиг.4 и 5). Если в электропроводящей среде имеется электрическая помеха, то на электродах 9 и 10 с полезным сигналом, пропорциональным скорости потока жидкости, суммируется сигнал электрической помехи, пропорциональный напряженности электрического поля помехи и расстоянию между электродами 9 и 10. При выполнении условий (1) и (2) сигнал помехи на электродах 9 и 10 будет иметь ту же полярность (ту же фазу) и примерно то же значение, что и на электродах 7 и 8. Напряжение между электродами 9 и 10 поступает на входы дифференциального усилителя 18, в котором сигнал усиливается и поступает на другой вход усилителя 19.

После усиления усилителем 19 разностного сигнала, поступающего на его входы, сигнал на его выходе пропорционален только скорости потока жидкости, так как при вычитании полезных противофазных сигналов, поступающих с выходов усилителей 17 и 18, эти сигналы суммируются, а синфазные сигналы, пропорциональные уровню электрической помехи, вычитаются.

Сигнал на выходе усилителя 19, пропорциональный измеряемой скорости потока жидкости, может поступать на индикатор или преобразовываться в цифровую форму, передаваться по линиям связи для обработки и регистрации.

Таким образом, при использовании предлагаемого изобретения достигается технический результат, заключающийся в повышении точности измерения скорости потока электропроводящей жидкости из-за снижения влияния электрических помех в исследуемой электропроводящей жидкости на результаты измерений.

Представленные чертежи и описание позволяет изготовить устройство по известным технологиям с применением известных материалов и использовать его для проведения измерений скорости потока жидкости, что характеризует изобретение как промышленно применимое.

Источники информации

1. Шерклиф Дж. Теория электромагнитного измерения расхода. М.: Мир, 1965.

2. А.С. СССР №775699, МПК G01P 5/08, опубл. 30.10.1980.

3. А.С. СССР №1144057, МПК G01P 5/08, опубл. 07.02.1985.

4. А.С. СССР №1239604, МПК G01P 5/08, опубл. 23.06.1986.

5. А.С. СССР №679878, МПК G01P 5/08, опубл. 15.08.1979 (прототип).

Похожие патенты RU2338207C1

название год авторы номер документа
ПРЕОБРАЗОВАТЕЛЬ СКОРОСТИ С ЗОНОЙ ФОРМИРОВАНИЯ СИГНАЛА ВНЕ ПОГРАНИЧНОГО СЛОЯ 2007
  • Аржанников Анатолий Васильевич
  • Шумилов Александр Сергеевич
  • Французов Виктор Васильевич
RU2335774C1
Электромагнитный преобразователь для регистрации турбулентных структур в потоке электропроводящей жидкости (его варианты) 1983
  • Адамовский Леонид Антонович
  • Голованов Василий Васильевич
SU1112233A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ТУРБУЛЕНТНОГО ПОТОКА ЖИДКОСТИ (ВАРИАНТЫ) 2014
  • Аржанников Анатолий Васильевич
  • Васильев Алексей Анатольевич
  • Логинов Александр Ильич
RU2561304C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ТУРБУЛЕНТНОГО ПОТОКА ЖИДКОСТИ (ВАРИАНТЫ) 2009
  • Аржанников Анатолий Васильевич
  • Васильев Алексей Анатольевич
  • Логинов Александр Ильич
  • Бойков Кирилл Борисович
  • Проценко Алексей Владимирович
RU2420743C1
СПОСОБ РАБОТЫ УСТРОЙСТВА ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА СРЕДЫ МАГНИТОИНДУКЦИОННОГО РАСХОДОМЕРА (ВАРИАНТЫ) И МАГНИТОИНДУКЦИОННЫЙ РАСХОДОМЕР 2009
  • Кадров Александр Васильевич
RU2410646C2
ВИХРЕВОЙ ЭЛЕКТРОМАГНИТНЫЙ РАСХОДОМЕР 1999
  • Тиунов М.Ю.
  • Кузник И.В.
  • Козлов С.П.
RU2137094C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПУЛЬСАЦИЙ СКОРОСТИ ТЕЧЕНИЯ 2001
  • Гусев А.В.
  • Федотов Г.А.
RU2189601C1
МИКРОМЕХАНИЧЕСКИЙ ВИБРАЦИОННЫЙ ГИРОСКОП 2010
  • Коновалов Сергей Феодосьевич
  • Подчезерцев Виктор Павлович
  • Сидоров Александр Григорьевич
  • Майоров Денис Владимирович
  • Пономарев Юрий Анатольевич
  • Хуо Хан Парк
  • Нам Йол Квон
RU2485444C2
СПОСОБ, СИСТЕМА И АППАРАТ, ИСПОЛЬЗУЮЩИЕ ВЫСОКОЭНЕРГЕТИЧЕСКИЕ ПОСТОЯННЫЕ МАГНИТЫ ДЛЯ ЭЛЕКТРОМАГНИТНОГО ПЕРЕМЕЩЕНИЯ, ТОРМОЖЕНИЯ И ДОЗИРОВАНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ, ПОДАВАЕМЫХ В ЛИТЕЙНЫЕ МАШИНЫ 2000
  • Каган Валерий Г.
RU2256279C2
СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ ЭЛЕКТРОПРОВОДЯЩИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Романов Сергей Иванович
  • Кранин Михаил Анатольевич
  • Кранин Дмитрий Михайлович
  • Серебренников Андрей Николаевич
  • Будков Алексей Ремович
RU2610931C1

Иллюстрации к изобретению RU 2 338 207 C1

Реферат патента 2008 года ПРЕОБРАЗОВАТЕЛЬ СКОРОСТИ С КОМПЕНСАЦИЕЙ ЭЛЕКТРИЧЕСКИХ ПОМЕХ

Изобретение может быть использовано для измерения скорости преимущественно морской воды. В корпусе устройства закреплена магнитная система из шести постоянных магнитов, одними из своих полюсов обращенных к рабочей поверхности корпуса, образованной покрытием из диэлектрического материала. Между магнитами расположены четыре электрода, попарно подключенные к одноименным входам первого и второго дифференциальных усилителей электронного блока. Выходы первого и второго дифференциальных усилителей соединены со входами третьего дифференциального усилителя, выход которого является выходом устройства. Размещение электродов в вершинах прямоугольника позволяет достичь максимального подавления электрических помех, имеющихся в электропроводящей среде. Изобретение повышает точность измерения скорости потока электропроводящей жидкости. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 338 207 C1

1. Устройство для измерения скорости потока электропроводящей жидкости, содержащее магнитную систему, расположенную в корпусе, электроды и электронный блок, отличающееся тем, что магнитная система содержит шесть постоянных магнитов, первый из которых обращен одним из своих полюсов к рабочей поверхности корпуса, образованной покрытием из диэлектрического материала, второй и третий идентичные по конструкции постоянные магниты, расположенные с противоположных сторон от первого постоянного магнита и обращенные к рабочей поверхности корпуса полюсами, полярность которых противоположна полярности полюса первого постоянного магнита, обращенного к рабочей поверхности корпуса, четвертый, пятый и шестой постоянные магниты, расположенные рядом соответственно с первым, вторым и третьим постоянными магнитами и обращенные к рабочей поверхности корпуса полюсами, полярность которых противоположна полярностям обращенных к рабочей поверхности корпуса полюсов соответственно первого, второго и третьего постоянных магнитов, при этом первый электрод расположен между первым и вторым постоянными магнитами, второй электрод расположен между первым и третьим постоянными магнитами, третий электрод расположен между четвертым и пятым постоянными магнитами, четвертый электрод расположен между четвертым и шестым постоянными магнитами, электронный блок содержит первый и второй дифференциальные усилители, первые одноименные входы которых соединены соответственно с первым и третьим электродами, вторые одноименные входы первого и второго дифференциальных усилителей соединены соответственно со вторым и четвертым электродами, третий дифференциальный усилитель, первый и второй входы которого соединены с выходами соответственно первого и второго дифференциальных усилителей, а выход является выходом устройства.2. Устройство по п.1, отличающееся тем, что расстояния между электродами удовлетворяют соотношениям: a12=a34, a13=a24, где a12, a34, a13, a24 - расстояния соответственно между первым и вторым, третьим и четвертым, первым и третьим, вторым и четвертым электродами.

Документы, цитированные в отчете о поиске Патент 2008 года RU2338207C1

Устройство для измерения пульсаций скорости потока электропроводной жидкости 1979
  • Василевский Владимир Владимирович
  • Голубев Юрий Евгеньевич
SU773496A1
Устройство для измерения градиента скорости потока жидкости 1983
  • Батова Галина Прокопьевна
  • Вельт Иван Дмитриевич
  • Звенигородский Эдуард Григорьевич
  • Иванов Геннадий Валентинович
  • Михайлова Юлия Владимировна
  • Перфильева Людмила Дмитриевна
SU1150544A1
US 3898881 А, 12.08.1975
ЛОГИНОВ Н.И
Электромагнитные преобразователи расхода жидких металлов
- М.: Энергоиздат, 1981, с.48-51.

RU 2 338 207 C1

Авторы

Аржанников Анатолий Васильевич

Овчинников Федор Борисович

Французов Виктор Васильевич

Даты

2008-11-10Публикация

2007-10-10Подача