Изобретение относится к области судостроения и энергетики и предназначено для утилизации теплоты выпускных газов судовых энергоустановок и может быть использовано в стационарных энергоустановках.
Известен способ, в котором утилизацию тепловых потерь главных судовых двигателей внутреннего сгорания осуществляют использованием части теплоты отработавших газов [см. Козлов В.И., Титов П.И., Юдицкий Ф.Л. Судовые энергетические установки - Л.: Судостроение, 1969. - 496 с., рис.82, с.200]. Он заключается в том, что в главных двигателях внутреннего сгорания отработавшие газы частично используют в турбокомпрессорах для наддува двигателей, затем направляют в утилизационный котел и далее направляют на выхлоп в дымовую трубу. Расчетные температуры газов перед утилизационным котлом 270-420°С [см. Беляев И.Г. Эксплуатация утилизационных установок дизельных судов. - М.: Транспорт, 1979. - 144 с., табл.1, с.7-8]. В случаях, если на некоторых режимах работы установки при таком способе утилизации нет необходимости в работе утилизационного котла, то регулирование его паропроизводительности осуществляют посредством газоперепускной заслонки, когда котел отключают и газы направляют на выхлоп помимо котла, то есть часть теплоты отходящих газов на данном режиме работы установки теряется. Температура газов перед утилизационным котлом в зависимости от типа двигателей практически находится в пределах 250-400°С. Температуру газов за утилизационным котлом выдерживают достаточно высокую - не ниже 160-180°С, так как при попытках установить более низкую температуру содержащийся в газах водяной пар конденсируется при контакте с поверхностями теплообмена и вызывает их усиленную коррозию.
Известно и устройство, реализующее данный способ утилизации тепловых потерь отходящих газов главных судовых двигателей внутреннего сгорания, содержащее турбокомпрессор главного двигателя, утилизационный котел, сепаратор пара, циркуляционные насосы, конденсатор, трубопроводы и арматуру, регулирующую паропроизводительность утилизационного котла путем ограничения поверхности нагрева [см. Козлов В.И., Титов П.И., Юдицкий Ф.Л. Судовые энергетические установки. - Л.: Судостроение, 1969. - 496 с., рис.82, с.210-211].
Недостаток известных способа и устройства утилизации заключается в наличии неизбежной зависимости количества утилизируемой теплоты отходящих газов судовых двигателей от потребностей использования на данный момент самой теплоты. Вследствие этого происходит недоиспользование больших поверхностей нагрева теплообменника утилизационного котла и потеря значительного количества теплоты. Этот недостаток проявляется в том, что в известных решениях отсутствует возможность оперативно принимать меры по использованию теплоты отходящих газов для других судовых потребителей. К недостаткам также относится тот факт, что при выходе из строя нескольких нагревательных испарительных труб утилизационного котла, что в эксплуатации нередко, становится невозможной эксплуатация самого утилизационного котла судна. При эксплуатации судового утилизационного котла, особенно с многократной принудительной циркуляцией, нередки случаи, когда выходят из строя его испарительные трубы, которые не подлежат восстановлению, а также и остальные поверхности нагрева утилизационного котла [см. Маслов В.В. Утилизация теплоты судовых дизелей. - М: Транспорт, 1990. - 144 с., стр.30]. Одним из недостатков известного устройства и способа его использования являются достаточно высокие требования к качеству питательной воды, особенно к содержанию в ней кислорода, а также и к качеству топлива, на котором работает главный двигатель. Происходящие массовые отказы судовых утилизационных котлов происходят в основном из-за кислородной коррозии испарительных труб змеевиков. Причина обусловлена тем, что в сепаратор пара судового утилизационного котла питательную воду обычно подают с температурой 40-60°С и содержанием кислорода обычно достаточно высоким - до 5 мг/л, то есть достаточно низкого качества. При периодическом питании судового утилизационного котла вода, насыщенная кислородом, проходит через его змеевики. По мере ее нагрева и испарения выделяется кислород, вызывающий интенсивную внутреннюю коррозию труб. Выход из строя змеевиков вызывается также сернистой коррозией наружных поверхностей нагрева утилизационного котла. Она характерна для случаев, когда главный судовой двигатель эксплуатируется на топливе с содержанием серы более 0,5% при температуре циркуляционной воды на входе в утилизационный котел ниже 110°С и низких значениях мощности главного двигателя.
Известен способ, в котором утилизацию тепловых потерь главных судовых двигателей внутреннего сгорания осуществляют использованием части теплоты только охлаждающей воды в вакуумной испарительной установке [см. Камкин С.В. Анализ кпд судовых дизельных установок. - М.: Транспорт, 1965. - 112 с., с.57-61]. Он заключается в том, что теплоту потока воды, циркулирующей в системе охлаждения двигателя, используют в испарительной установке для получения пресной воды. Этот способ утилизации получил большое распространение на теплоходах, что объясняется возможностью использования теплоты низкого потенциала и достигаемой в результате существенной экономической эффективностью.
Известно и устройство, реализующее данный способ утилизации тепловых потерь, содержащее главный судовой двигатель (дизель), водоохладитель пресной воды дизеля, испаритель, эжектор с эжекторным насосом, рассольный насос, ротаметр, конденсатный насос, солемер, насос забортной воды, насос пресной воды дизеля, трубопроводы и арматуру, регулирующую производительность испарительной установки путем ограничения количества пресной воды через испарительную установку [см. тот же источник, с.59, рис.15].
Недостаток известных способа и устройства утилизации заключается в необходимости поддержания оптимальной температуры в системе охлаждения двигателя из-за изменения режима его работы. Вследствие этого с его изменением происходит нарушение режима работы опреснительной установки. При этом с водой, охлаждающей главный двигатель, теряется меньшее количество теплоты, чем с отработанными газами, так как вода, охлаждающая главный двигатель, обладает более низким температурным потенциалом, чем отходящие от двигателя газы. Также одним из недостатков, проявляющихся при эксплуатации любого типа опреснительной установки, является образование накипи или солевых отложений на теплопередающих поверхностях. Появление накипи и загрязняющих отложений однозначно сказывается на производительности установки, качестве вырабатываемой воды, выходе из строя главного аппарата и вспомогательных элементов и, как результат, неизбежное ухудшение экономичности из-за увеличения затрат (топливо, электроэнергия, реагенты) [см. Слесаренко В.Н., Слесаренко В.В. Судовые опреснительные установки. - Владивосток: Морской государственный университет, 2001. - 448 с. ISBN-5-8343-0088-Х., с.375].
Применение современных малооборотных судовых двигателей внутреннего сгорания, как известно, сопряжено с проблемой полного обеспечения потребностей ходового режима судна в тепловой и электрической энергии за счет вторичных энергоресурсов, то есть без дополнительных затрат топлива. Уменьшение же количества теплоты отработавших газов таких двигателей до 27-29% от количества теплоты сгорания топлива и их температуры до малых величин - 235-285°С, что нередко в эксплуатации, делает вообще малопригодным даже известные схемы глубокой утилизации. Известные комплексные системы утилизации теплоты малооборотных судовых двигателей [см. Седельников Г.Д. Энергосберегающие системы малооборотных дизелей. - Владивосток: Дальнаука, 2003. - 230 с., с.3], использующие теплоту как отработавших газов, надувочного воздуха так и пресной воды, охлаждающей втулки цилиндров малооборотных главных двигателей, повышают полезное теплоиспользование в такой судовой дизельной установке, но значительно ее усложняют. По этой причине они не нашли широкого применения.
Наиболее близким техническим решением из известных, принятым за прототип по большинству признаков, является известный способ утилизации теплоты отходящих газов главного судового двигателя внутреннего сгорания, по которому утилизационный котел имеет возможность замещать полностью или частично вспомогательный котел судна.
Известный способ заключается в том, что отработанные газы главных судовых двигателей внутреннего сгорания направляют в турбокомпрессоры для наддува этих двигателей, где используют их теплоту, затем направляют в утилизационный котел и далее направляют на выхлоп в дымовую трубу. При этом в утилизационный котел подают из сепаратора пара водяной теплоноситель, который в нем нагревают этими газами, а образующийся в его испарительных трубах пар направляют в сепаратор пара. Регулирование давления пара утилизационного котла в известном способе осуществляют путем сброса посредством регулирующего клапана излишков пара на конденсатор. Температуру газов перед утилизационным котлом в зависимости от типа двигателей выдерживают в пределах 235-400°С. Температуру газов за утилизационным котлом вынужденно выдерживают не ниже 160-180°С, то есть достаточно высокую [см. Камкин С.В. Повышение эффективности эксплуатации судовых дизельных установок на основе утилизации и выбора режимов работы: Тексты лекций. - М.: В/О «Мортехинформреклама», 1989. - 56 с., с.14-15]. Регулирование теплоты, переданной отходящими газами главного двигателя питательной воде утилизационного котла, при таком известном способе утилизации полностью отсутствует. В случаях, если на некоторых режимах работы установки при таком способе утилизации нет необходимости в работе утилизационного котла, то весь полученный пар сбрасывают на конденсатор, то есть вся теплота теряется. Часть теплоты отходящих газов на большинстве режимов работы установки не используется, теряется и, кроме того, происходят дополнительные и немалые потери теплоты, связанные с обеспечением работы питательного и циркуляционного насосов утилизационного котла и циркуляционного насоса конденсатора, обеспечивающих соответственно подачу питательной воды в утилизационный котел и из него в сепаратор пара и охлаждение лишнего пара в конденсаторе. По сравнению с другими известными способами этот способ самый простой, для него требуются минимальные затраты на систему автоматического регулирования, но вместе с тем требуются и самые большие эксплуатационные расходы, связанные с работой циркуляционного насоса конденсатора, подающего забортную воду в конденсатор. Этот насос должен работать постоянно с увеличенной производительностью на случай сброса в конденсатор через регулирующий клапан всех излишков пара.
Известно и устройство, принятое за прототип по большинству признаков, в котором реализован данный способ, которое включает турбокомпрессор главного двигателя, утилизационный котел, сепаратор пара, питательный и циркуляционный насосы утилизационного котла, конденсатор и циркуляционный насос конденсатора, трубопровод, сообщающий питательный насос утилизационного котла со змеевиками испарительных труб утилизационного котла через сепаратор пара и циркуляционный насос утилизационного котла с одной стороны, и трубопровод, сообщающий змеевики испарительных труб утилизационного котла с сепаратором пара с другой стороны, разобщительную арматуру на входе и выходе утилизационного котла перед и после змеевиков испарительных труб [см. тот же источник, рис.9, с.15].
Недостатком известных способа и устройства является неполное использование тепловой энергии отходящих газов, обусловленное нередким несовпадением потребностей в потребляемом паре с возможностями отдачи теплоты отходящими газами главного двигателя, которые зависят от режима работы источника теплоты - самого главного двигателя. Для полного замещения потребителям пара вспомогательного котла на судне обычно, как известно, необходима мощность работы главного судового двигателя, составляющая не менее 50% от номинальной. Кроме этого, при мощности работы главного судового двигателя в режиме более 50% от номинальной в данном известном техническом решении есть неизбежная зависимость количества полезно используемой теплоты отходящих газов от потребности потребителей. Если потребности теплоты в некоторых режимах работы энергоустановки судна небольшие, то в данном известном решении лишний пар сбрасывают в конденсатор, т.е. теплота на данных режимах не используется. Эффективность устройства схемы, реализующего данный способ, ограничена, особенно при плавании в летнее время в тропических районах. Вследствие этого часто происходит недоиспользование больших поверхностей нагрева утилизационного котла и потеря значительного количества теплоты. Кроме этого, коррозия (кислородная и сернистая) испарительных труб его змеевиков сокращает срок службы испарительных змеевиков устройства, которое работает по данному известному способу использования теплоты отходящих газов.
Техническая задача, притом назревшая издавна, на которую направлено заявляемое изобретение, - устранение указанных недостатков, а именно повышение степени утилизации теплоты отходящих газов судовых двигателей внутреннего сгорания энергетической установки за счет более полного использования их теплоты и в период невозможности работы утилизационного котла в некоторых режимах ее работы из-за того, что температура отходящих газов после него составляет величину менее 160-180°С, а также в период малых потребностей судовых потребителей в тепловой энергии (например, при плавании судна в тропиках). Технической задачей также является повышение срока службы испарительных змеевиков утилизационного котла.
Указанная техническая задача достигается тем, что в известном способе утилизации теплоты отходящих газов энергетической установки судна, заключающемся в том, что отработанные газы главных судовых двигателей внутреннего сгорания через их турбокомпрессоры направляют в утилизационный котел, куда подают из сепаратора пара теплоноситель, который нагревают в утилизационном котле этими газами, и образующийся в его испарительных трубах пар направляют в сепаратор пара, а отработанные газы главных судовых двигателей направляют на выхлоп в дымовую трубу, причем температуру газов за утилизационным котлом во всех режимах эксплуатации двигателей выдерживают не ниже 160°С, В ОТЛИЧИЕ ОТ НЕГО, в заявляемом в режимах эксплуатационного снижения мощности работы главного судового двигателя или снижения потребления тепловой энергии судовыми вспомогательными потребителями заменяют водяной теплоноситель испарительных труб утилизационного котла на воздушный. Для этого предварительно отключают испарительные трубы утилизационного котла от сепаратора пара посредством разобщительной арматуры, осушают испарительные трубы утилизационного котла от водяного теплоносителя и подают в них воздушный теплоноситель путем сообщения испарительных труб утилизационного котла с воздушным резервуаром, сообщенным с судовой системой сжатого воздуха. Нагревают воздушный теплоноситель в утилизационном котле отходящими газами судового двигателя и подают его на теплообменный аппарат для опреснения морских и минерализованных вод посредством открытия соответствующей разобщительной арматуры утилизационного котла. Причем получаемые на выходах опресняющего аппарата рассол и горячий воздух используют для нужд судна, а образующийся пар направляют в сепаратор пара на конденсацию.
Указанная техническая задача достигается также и тем, что в известном устройстве для утилизации теплоты отходящих газов энергетической установки судна, содержащем турбокомпрессор главного судового двигателя, утилизационный котел со змеевиками испарительных труб, сепаратор пара, питательный и циркуляционный насосы утилизационного котла, трубопроводы, подводящие и отводящие к утилизационному котлу рабочий теплоноситель и сообщающие змеевики его испарительных труб соответственно с одной стороны с питательным насосом через сепаратор пара и циркуляционный насос утилизационного котла, а с другой - с сепаратором пара, и разобщительную арматуру на данных трубопроводах, В ОТЛИЧИЕ ОТ НЕГО, заявляемое дополнительно содержит теплообменный аппарат для опреснения морских и минерализованных вод [см. положительное решение по заявке №2005116658/15 (019001) от 31.05.2005 г.], резервуар сжатого воздуха, сообщающийся с судовой системой сжатого воздуха. При этом выход резервуара сжатого воздуха через редукционный клапан и разобщительный клапан сообщен с подводящим трубопроводом утилизационного котла на участке между его змеевиками и разобщительным вентилем. Отводящий трубопровод змеевиков утилизационного котла на участке между его разобщительным вентилем и змеевиками сообщен через разобщительный клапан со входом теплоносителя упомянутого теплообменного аппарата для опреснения морских и минерализованных вод. Причем змеевики утилизационного котла снабжены приспособлением для удаления из них рабочего теплоносителя, а отводы аппарата для опреснения морских и минерализованных вод сообщены соответственно с судовыми потребителями рассола, пара и горячего воздуха.
Заявляемые способ и устройство, совокупность элементов устройства, совокупность операций способа, выполняемых с использованием именно этих элементов, обеспечивают повышение степени утилизации теплоты отходящих газов за счет использования продуктов сгорания установки во время невозможности работы или отсутствия необходимости замещения вспомогательного котла, а также повышение срока службы испарительных змеевиков утилизационного котла.
Получение пресной воды на судах при утилизации отходящей теплоты энергоустановки известным путем осуществляют в настоящее время, в основном, использованием теплоты охлаждающей главный двигатель воды [см. Беляев И.Г. Эксплуатация утилизационных установок дизельных судов. - М.: Транспорт, 1979. - 144 с., с.119-126, см. Камкин С.В. Анализ кпд судовых дизельных установок. - М.: Транспорт, 1965. - 112 с., с.57-61]. Преимущество использования теплоты отходящих газов для опреснения морской воды согласно заявляемому решению заключается в том, что потери теплоты с отработавшими газами малооборотных двигателей внутреннего сгорания составляют 25-39%, а потери с охлаждающей пресной водой 7,4-15% [см. Маслов В.В. Утилизация теплоты судовых дизелей. - М.: Транспорт, 1990. - 144 с., с.42], по другим данным потери теплоты с отработавшими газами 25,5-36,9%, а потери с охлаждающей пресной водой 5,4-8,8% [см. Седельников Г.Д. Энергосберегающие системы малооборотных дизелей. - Владивосток: Дальнаука, 2003. - 230 с., с.32]. Кроме того, температурный уровень отходящих газов 235-290°С, а температурный уровень выходящей из двигателя пресной воды 80-85°С [см. там же]. При замене согласно заявляемому техническому решению нагреваемого в утилизационном котле теплоносителя - воды на воздух отсутствуют условия для развития кислородной коррозии внутренних поверхностей нагрева и снижаются условия для развития сернистой коррозии наружных поверхностей нагрева. Таким образом, повышается срок службы испарительных змеевиков утилизационного котла. Так как количество опресняемой воды не зависит от потребностей в ней в данный момент, то происходит увеличение степени утилизации теплоты отходящих газов за весь период работы энергоустановки. Например, если режим работы главного судового двигателя такой, что при использовании утилизационного котла для нагрева воды и превращения ее в пар температура отходящих газов перед утилизационным котлом 230°С, что нередко в эксплуатации, а за котлом 130°С, т.е. температурный уровень на выходе из утилизационного котла мал, то, следовательно, и эксплуатировать котел невозможно. Так как коэффициент теплопередачи от газов воздуху меньше, чем от газов воде, минимум в 2 раза, значит, температура отходящих газов на выходе из утилизационного котла при нагревании газами воздуха, при таком же массовом расходе воздуха, как и воды, будет снижена не до такой степени, как при нагреве воды. Она будет снижена примерно до 180°С, следовательно, в заявляемом решении шире возможности использования энергии отходящих газов при небольших нагрузках главного двигателя.
При этом используемый в заявляемом решении известный теплообменный аппарат для опреснения морских и минерализованных вод [см. положительное решение по заявке №2005116658/15 (019001) от 31.05.2005 г.] содержит ряды друг под другом "V"-образных накопителей, заканчивающихся внизу сквозной щелью малой ширины по всей длине в днище накопителя. Подачу морской воды в аппарат производят на верхний "V"-образный накопитель. Накопители формируют на выходе из щели пленочный поток. Слои пленки образуют пространство, между которыми со входа теплоносителя в испаритель поступает теплоноситель - нагретый в утилизационном котле воздух, подаваемый из резервуара сжатого воздуха. Образующийся вторичный пар поднимается в пространстве между пленками в верхнюю часть накопителей, имеющих по горизонтальной поверхности пленкообразующих площадок сквозные отверстия для его выпуска. Вторичный пар движется вверх, отделяется от влаги на поверхности отбойного листа и отводится из аппарата на судовые нужды. Греющий теплоноситель - воздух - движется между слоями пленочного потока и, отдавая ему тепло, уходит из теплообменного аппарата также на судовые нужды. Применение известного теплообменного аппарата для опреснения морских и минерализованных вод в заявляемом способе утилизации теплоты отходящих газов энергетической установки и в устройстве для его осуществления обусловлено такими его качествами, как повышенная эффективность использования пленочного потока рабочей среды (морской воды), сниженная теплоемкость тепловых потоков, необходимых для нагрева испаряемой пленки, достаточно простая конструкция аппарата, сниженная металлоемкость за счет исключения металлических поверхностей нагрева и применения материала листовой формы, сниженная потребляемая мощность на создание давления упариваемого продукта, низкие стоимость аппарата и затраты на эксплуатацию, сниженное накипеобразование вследствие отсутствия теплопередающих поверхностей. Таким образом достигается решение поставленной технической задачи заявляемого изобретения.
Заявляемый способ утилизации теплоты отходящих газов энергетической установки судна поясняется чертежом, где представлена схема устройства, позволяющего реализовать заявляемый способ.
Устройство содержит турбокомпрессор главного двигателя внутреннего сгорания (не показан), утилизационный котел 1, сепаратор пара (не показан), питательный и циркуляционный насосы утилизационного котла 1 (не показаны), подводящий трубопровод 2, соединяющий разобщительный вентиль 3 утилизационного котла 1 со змеевиками испарительных труб 4 утилизационного котла 1, отводящий трубопровод 5, соединяющий змеевики испарительных труб 4 с разобщительным вентилем 6 утилизационного котла, трубопровод 7, соединяющий резервуар сжатого воздуха 8, сообщенный с судовой системой сжатого воздуха (не показана) с редукционным клапаном 9 для настройки давления в змеевиках испарительных труб 4 утилизационного котла 1, трубопровод 10, соединяющий редукционный клапан 9 с разобщительным клапаном 11, трубопровод 12, соединяющий разобщительный клапан 11 через трубопровод 2 со змеевиками испарительных труб 4 утилизационного котла 1 на участке между ними и вентилем 3, трубопровод 13, соединяющий через трубопровод 5 змеевики испарительных труб 4 утилизационного котла 1 на участке между ними и вентилем 6 на стороне входа в сепаратор пара с разобщительным клапаном 14, трубопровод 15, соединяющий разобщительный клапан 14 со входом теплоносителя 16 известного теплообменного аппарата для опреснения морских и минерализованных вод 17.
Способ осуществляют следующим образом. В режимах эксплуатации при полной загрузке потребителями утилизационного котла 1 устройство используют обычным традиционным методом. Для этого при закрытых разобщительных клапанах 11 и 14 и открытых разобщительных вентилях 3 и 6 воду подают питательным насосом (не показан) в сепаратор пара (не показан) и далее на испарительные трубы 4 утилизационного котла 1 с отводом образующейся пароводяной смеси посредством его циркуляционного насоса (не показан) по замкнутому циклу в сепаратор пара. Отходящий газ главного двигателя внутреннего сгорания на выходе из турбокомпрессора (не показан) нагревает змеевики испарительных труб 4 и удаляется в атмосферу. При эксплуатации устройства в режимах отсутствия необходимости или невозможности работы утилизационного котла 1 (т.е. по известному способу) перекрывают вентиль 3 утилизационного котла 1 и осушают посредством сообщения с атмосферой через патрубки спуска и вентиляции с арматурой (приспособление для удаления рабочего теплоносителя из змеевиков, не показано) змеевики испарительных труб 4 утилизационного котла 1. Затем перекрывают вентиль 6. Воздух от резервуара сжатого воздуха 8 системы сжатого воздуха с необходимым давлением подают к змеевикам испарительных труб 4 утилизационного котла 1, открыв клапан 11. При этом необходимое установочное давление воздуха перед утилизационным котлом 1 поддерживается автоматически редукционным клапаном 9, который нагружают в этот момент на необходимое давление. Воздух в змеевиках утилизационного котла 1 нагревается вплоть до 180°С. Открывают клапан 14. Нагретый в змеевиках испарительных труб 4 утилизационного котла 1 воздух поступает на вход теплоносителя 16 теплообменника 17, куда одновременно на его вход морской воды 18 от системы охлаждения двигателя (не показано) подводят забортную морскую воду. В теплообменнике 17 происходит процесс ее опреснения. Отработанный в теплообменнике горячий воздух через его выход 19 и рассол с выхода 20 используют для судовых нужд, например бытового обогрева помещений, камбуза и пр. (не показано), или воздух выпускают в атмосферу. Выходящий из теплообменного аппарата 17 по его выходу 21 пар направляют в сепаратор пара на конденсацию (не показано).
При использовании устройства, работающего по заявляемому способу, достигаются следующие полезные результаты:
1. Поверхность нагрева опреснителя отсутствует, т.к. передача теплоты осуществляется от греющего теплоносителя непосредственно пленочному потоку нагреваемой жидкости, что предотвращает образование накипи, как в традиционных опреснителях.
2. Из опреснителя выбрасывается экологически чистая среда.
3. Опреснение происходит с использованием высокого температурного потенциала рабочего тела (нагрев воздуха возможен до 180°С).
Преимущества заявляемого способа утилизации по сравнению с традиционными заключаются в возможности совершенствования тепловой схемы судовой энергетической установки. Это достигается за счет:
1. Комплексного потребления энергии вырабатываемой судовым компрессором (не показан), обслуживающим судовую энергетическую установку, что увеличивает время его полезного использования.
2. Утилизации теплоты отходящих газов главного двигателя на подогревателе воздуха, функцию которого выполняет утилизационный котел 1.
3. Получение пресной воды на опреснительной установке стабильно, независимо от режима работы главного судового двигателя при утилизации теплоты отходящих газов энергоустановки.
название | год | авторы | номер документа |
---|---|---|---|
Судно ледового плавания | 1983 |
|
SU1142361A1 |
УТИЛИЗАЦИОННАЯ УСТАНОВКА С ПАРОВЫМ КОТЛОМ | 2012 |
|
RU2493483C1 |
СПОСОБ ЗАПУСКА ПАРОВОГО КОТЛА | 1971 |
|
SU320668A1 |
Судовая силовая установка | 1987 |
|
SU1560762A1 |
ОПРЕСНИТЕЛЬНАЯ УСТАНОВКА И УСТРОЙСТВО ДЛЯ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ (ВАРИАНТЫ) | 2010 |
|
RU2442719C1 |
УТИЛИЗАЦИОННЫЙ ПАРОВОЙ КОТЕЛ СЕНЯ | 2007 |
|
RU2394184C2 |
СПОСОБ КОМБИНИРОВАННОЙ ВЫРАБОТКИ МЕХАНИЧЕСКОЙ, ТЕПЛОВОЙ ЭНЕРГИИ И ПОЛУЧЕНИЯ ТВЕРДОГО ДИОКСИДА УГЛЕРОДА | 2016 |
|
RU2691869C2 |
КОТЕЛЬНАЯ УСТАНОВКА | 1994 |
|
RU2086849C1 |
КОМПЛЕКСНАЯ СИСТЕМА ПОВЫШЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ЭНЕРГОУСТАНОВКИ МОРСКОГО СУДНА | 2012 |
|
RU2502547C2 |
Утилизационная опреснительная установка судна с дизельным двигателем | 1981 |
|
SU977282A1 |
Изобретение относится к судостроению и энергетике. Способ утилизации теплоты отходящих газов энергетической установки судна, заключающийся в том, что отработанные газы главных судовых двигателей внутреннего сгорания через их турбокомпрессоры направляют в утилизационный котел, куда подают из сепаратора пара теплоноситель, который нагревают в утилизационном котле этими газами, и образующийся в его испарительных трубах пар направляют в сепаратор пара, а отработанные газы главных судовых двигателей направляют на выхлоп в дымовую трубу, причем температуру газов за утилизационным котлом во всех режимах эксплуатации двигателей выдерживают не ниже 160°С, согласно изобретению в режимах эксплуатационного снижения мощности работы главного судового двигателя или снижения потребления тепловой энергии судовыми вспомогательными потребителями заменяют водяной теплоноситель испарительных труб утилизационного котла на воздушный, для чего предварительно отключают испарительные трубы утилизационного котла от сепаратора пара посредством разобщительной арматуры, осушают испарительные трубы утилизационного котла от водяного теплоносителя и подают в них воздушный теплоноситель путем сообщения испарительных труб утилизационного котла с воздушным резервуаром, сообщенным с судовой системой сжатого воздуха; нагревают воздушный теплоноситель в утилизационном котле отходящими газами судового двигателя и подают его на теплообменный аппарат для опреснения морских и минерализованных вод посредством открытия соответствующей разобщительной арматуры утилизационного котла, причем получаемые на выходах опресняющего аппарата рассол и горячий воздух используют для нужд судна, а образующийся пар направляют в сепаратор пара на конденсацию. Рассмотрено устройство для утилизации теплоты отходящих газов энергетической установки судна, которое дополнительно содержит теплообменный аппарат для опреснения морских и минерализованных вод, резервуар сжатого воздуха, сообщающийся с судовой системой сжатого воздуха, при этом выход резервуара сжатого воздуха через редукционный клапан и разобщительный клапан сообщен с подводящим трубопроводом утилизационного котла на участке между его змеевиками и его разобщительным вентилем, отводящий трубопровод змеевиков утилизационного котла на участке между его разобщительным вентилем и змеевиками сообщен через разобщительный клапан со входом теплоносителя упомянутого теплообменного аппарата для опреснения морских и минерализованных вод, причем змеевики утилизационного котла снабжены приспособлением для удаления из них рабочего теплоносителя, а отводы аппарата для опреснения морских и минерализованных вод сообщены соответственно с судовыми потребителями рассола, пара и горячего воздуха. Изобретение обеспечивает повышение степени утилизации теплоты отходящих газов судовых двигателей внутреннего сгорания. 2 н.п. ф-лы, 1 ил.
КАМКИН С.В | |||
Повышение эффективности эксплуатации судовых дизельных установок на основе утилизации и выбора режимов работы: тексты лекций - М.: Мортехинформреклама, 1989, с.14-15 | |||
КАМКИН С.В | |||
Повышение эффективности эксплуатации судовых дизельных установок на основе утилизации и выбора режимов работы: тексты лекций | |||
- М.: Мортехинформреклама, 1989, |
Авторы
Даты
2008-12-10—Публикация
2007-06-04—Подача