СПОСОБ ЦЕМЕНТИРОВАНИЯ СКВАЖИН Российский патент 2009 года по МПК E21B33/14 

Описание патента на изобретение RU2345212C1

Изобретение относится к строительству нефтяных, газовых и разведочных скважин, в частности, к способам их цементирования газированными тампонажными растворами.

Известен способ цементирования обсадных колонн [а.с. 1723308 SU, МПК5 Е21В 33/14, опубл. 30.03.92], заключающийся в повышении надежности технологического процесса путем обеспечения ступенчатого снятия гидростатического давления столба жидкости за обсадной колонной. В период ожидания затвердевания цемента поддерживают гидравлическую связь через забой затрубного и трубного пространств между собой, а высоту столба очередной части тампонажного раствора ограничивают допустимым внешним давлением на обсадную колонну.

Известен способ цементирования обсадных колонн [а.с. 1454953 SU, МПК4 Е21В 33/14, опубл. 30.01.89], заключающийся в том, что с целью снижения интенсивности поглощения цементного раствора поглощающими пластами закачивание буферной жидкости и цементного раствора осуществляют с противодавлением на устье скважины, не меньшим давления поглощения пластов, но меньшим давления их гидроразрыва, а во время продавки цементного раствора противодавление на устье сбрасывают в соответствии с темпом роста давления продавливания.

Известен способ цементирования обсадных колонн [а.с. 1707185 SU, МПК5 Е21В 33/14, опубл. 23.01.92], заключающийся в том, что с целью повышения качества цементирования за счет предотвращения дегазации и обеспечения подъема газированного цементного раствора до устья, в процессе продавливания и схватывания газированного цементного раствора на устье в затрубном пространстве скважины создают давление не менее 2 МПа.

Причинами, препятствующими достижению заявляемого технического результата указанных известных аналогов, является создание в затрубном пространстве избыточного давления, вызывающего поглощения в горизонтах с аномально низкими пластовыми давлениями. В процессе создания противодавления на устье скважины не менее 2 МПа и более в начальный период продавливания газированного раствора, возникают осложнения, связанные с низкой сжимаемостью пены (газированной композиции), что может привести к гидроразрыву, недоподъему до проектной высоты тампонажного раствора.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа цементирования скважины газированными тампонажными растворами.

При осуществлении изобретения поставленная задача решается за счет достижения технического результата, который заключается в повышении качества цементирования скважины путем разрушения дефектной структуры на первой стадии структурообразования (активации) газированной тампонажной суспензии за счет поэтапного продавливания газированного тампонажного раствора с учетом его устойчивости.

Указанный технический результат достигается в два этапа. На первом этапе осуществляется закачивание буферной жидкости, газированного тампонажного раствора и продавливание их до проектной высоты. На втором этапе осуществляется остановка процесса, на время первой фазы структурообразования газированного тампонажного раствора, и окончание процесса продавливания с учетом дегазации газированного тампонажного раствора в течение времени первой фазы структурообразования.

По И.Г.Гранковскому существует 4 стадии структурообразования. На первой стадии коллоидные частицы коагулируются, образуя пространственный каркас коагуляционной структуры, с покрытыми гидратными новообразованиями частицами клинкера. Контракция достигает максимальной величины, в результате структура малопрочна, что с развитием приводит к потере прочности. В этот момент целесообразно прикладывать механическое воздействие.

В свою очередь газированная тампонажная суспензия характеризуется устойчивостью, то есть временем существования («жизни») определенного ее объема. Исходя из этого, следует рассчитывать объем закачиваемого в скважину газированного тампонажного раствора V с учетом его устойчивости:

где VI - объем газированной тампонажной суспензии на момент окончания первой фазы закачивания, м3;

ϕ - устойчивость газированной тампонажной суспензии, %.

Устойчивость газированной тампонажной смеси определяется из следующего выражения (Тихомиров В.К. Пены. Теория и практика получения и разрушения. М.: Химия. 1983):

где VI и VII - объемы газированной суспензии на момент окончания первого этапа закачивания T1 (мин) и начало второго этапа закачивания Т2 (мин), соответствующего концу первой стадии структурообразования газированной тампонажной смеси.

Начало второго этапа закачивания Т2, соответствующее концу первой стадии структурообразования газированной тампонажной смеси. Устойчивость газированной суспензии ϕ для этого времени определяется в лабораторных условиях с учетом термобарических условий на забое скважины.

Пример.

Требуется вычислить объем V, необходимый для цементирования скважины с объемом цементируемого пространства VI=160 м3 газированным тампонажным раствором с устойчивостью ϕ=98%.

В результате вычислений по выражению (1) объем V газированного тампонажного раствора для цементирования скважины составит 163,2 м3.

Сущность изобретения заключается в том, что в процессе продавливания газированного тампонажного раствора в объеме, большем необходимого, на величину, обратную устойчивости, газированной тампонажной суспензии осуществляется остановка процесса продавливания на время:

где T1 - время окончания первого этапа, мин;

Т2 - время первой стадии структурообразования газированного тампонажного раствора с учетом термобарических (скважинных) условий, мин.

То есть процесс продавливания газированной тампонажной суспензии сопровождается ее активацией непосредственно в цементируемой скважине.

Способ включает в себя ряд технологических операций, связанных с активацией и подъемом газированной тампонажной суспензии до проектной отметки (продавливанием) после активации (первой стадии структурообразования).

Способ поясняется чертежами, где на фиг.1 представлена схема распределения технологических жидкостей на окончание первого этапа T1 процесса цементирования скважины газированным тампонажным раствором. Цифрами обозначены: 1 - обсадная колонна, 2 - цементировочная пробка, 3 - «стоп-кольцо», 4 - башмак обсадной колонны, 5 - газированный тампонажный раствор, 6 - продавочная жидкость, 7 - проектная высота подъема газированного тампонажного раствора.

На фиг.2 представлена схема распределения уровней газированного тампонажного раствора, продавочной и буферной жидкостей в обсадной колонне и затрубном пространстве на период времени, соответствующий Т2. Цифрами обозначены: 1 - обсадная колонна, 2 - цементировочная пробка, 3 - «стоп-кольцо», 4 - башмак обсадной колонны, 5 - газированный тампонажный раствор, 6 - продавочная жидкость, 7 - проектная высота подъема газированного тампонажного раствора, 8 - уровень газированного тампонажного раствора на момент времени Т2.

На фиг.3 представлен процесс продавливания газированного тампонажного раствора до посадки цементировочной пробки на «стоп-кольцо». Цифрами обозначены: 1 - обсадная колонна, 2 - цементировочная пробка, 3 - «стоп-кольцо», 4 - башмак обсадной колонны, 5 - газированный тампонажный раствор, 6 - продавочная жидкость, 7 - проектная высота подъема газированного тампонажного раствора.

Способ цементирования скважин осуществляют следующим образом. Первый этап: Первоначально в обсадную колонну 1 закачивают буферную жидкость, газированный тампонажный раствор 5, продавочную жидкость 6 и продавливают его в затрубное пространство до проектной высоты 7 (фиг.1). Объем газированного тампонажного раствора 5 определяют по выражению (1). Объем газированного тампонажного раствора 5, находящийся между цементировочной пробкой 2 и «стоп-кольцом» 3, определяют из условия кратности, сжимаемости с устойчивостью ϕ, которая зависит от вида применяемого поверхностно-активного вещества (ПАВ), а также дегазации (разрушения пены) за время Т2. В процессе продавливания цементировочная пробка 2 находится на некотором расстоянии до «стоп-кольца» 3.

Второй этап: Включает остановку процесса продавливания на время Т и возобновление продавливания спустя данный временной промежуток Т. Временной промежуток Т определяют по выражению (3) для каждой отдельной скважины с учетом влияния термобарических факторов и марки применяемого тампонажного портландцемента, например, либо экспериментальным путем, либо в лабораторных условиях, либо опытным путем.

Применение предлагаемого способа позволяет повысить качество цементирования скважины газированным тампонажным раствором за счет активации газированного тампонажного раствора в скважине, способствующей увеличению прочности получаемого в результате твердения камня, и компенсировать эффект оседания пены в верхних интервалах.

Похожие патенты RU2345212C1

название год авторы номер документа
СПОСОБ СТУПЕНЧАТОГО ЦЕМЕНТИРОВАНИЯ СКВАЖИН 1991
  • Еременко В.В.
  • Коган Э.В.
  • Вдовенко А.И.
  • Абрамов А.А.
  • Дудко М.П.
RU2038462C1
СПОСОБ СТУПЕНЧАТОГО ЦЕМЕНТИРОВАНИЯ СКВАЖИНЫ В ВЫСОКОПРОНИЦАЕМЫХ ГАЗОНАСЫЩЕННЫХ КОЛЛЕКТОРАХ 2003
  • Пономаренко М.Н.
  • Гасумов Рамиз Алиджавад Оглы
  • Мосиенко В.Г.
  • Нерсесов С.В.
  • Петялин В.Е.
  • Газиев К.М.-Я.
  • Остапов О.С.
  • Климанов А.В.
RU2241819C1
СПОСОБ ЦЕМЕНТИРОВАНИЯ ВЕРХНЕЙ СТУПЕНИ ОБСАДНОЙ КОЛОННЫ В СКВАЖИНЕ 2008
  • Вакула Андрей Ярославович
  • Катеев Ирек Сулейманович
  • Катеев Рустем Ирекович
  • Ивашечкин Борис Викторович
  • Гайдаров Акиф Магомед Расулович
RU2386013C1
СПОСОБ ЦЕМЕНТИРОВАНИЯ ОБСАДНОЙ КОЛОННЫ ГАЗОВОЙ СКВАЖИНЫ В УСЛОВИЯХ МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОД 2006
  • Гасумов Рамиз Алиджавад Оглы
  • Мосиенко Владимир Григорьевич
  • Швец Любовь Викторовна
  • Нерсесов Сергей Владимирович
  • Громадский Сергей Анатольевич
  • Кашапов Марат Алямович
  • Пономаренко Михаил Николаевич
  • Петялин Владимир Евгеньевич
RU2342517C2
Способ ступенчатого цементирова-Ния ОбСАдНыХ КОлОНН 1978
  • Вартанянц Степан Григорьевич
  • Еременко Валентин Васильевич
SU829875A1
Способ ступенчатого цементирования обсадных колонн 1980
  • Абрамов Аркадий Ашурович
  • Булатов Анатолий Иванович
  • Вдовенко Алексей Иванович
  • Дулаев Валерий Хаджи-Муратович
  • Измайлов Лазарь Борисович
SU947390A1
Способ цементирования скважин с использованием цементировочной головки 1985
  • Брагин Юрий Александрович
  • Дудко Михаил Петрович
  • Еременко Валентин Васильевич
  • Коган Эдуард Вениаминович
SU1379449A1
Способ цементирования скважины 2022
  • Осипов Роман Михайлович
  • Самерханов Айнур Камилович
  • Абакумов Антон Владимирович
RU2797167C1
Способ крепления потайной обсадной колонны ствола с вращением и цементированием зоны выше продуктивного пласта 2020
  • Антипов Сергей Петрович
  • Лебедев Артем Михайлович
  • Марданшин Карим Марселевич
  • Шарафетдинов Эльвир Анисович
RU2745147C1
Способ разобщения пластов при креплении скважин и устройство для его осуществления 1987
  • Цырин Юрий Завельевич
  • Ванифатьев Владимир Иванович
  • Дудаладов Анатолий Константинович
  • Домальчук Анатолий Антонович
  • Силуянов Сергей Николаевич
  • Фридман Виктор Леонович
  • Терентьев Сергей Владимирович
SU1548407A1

Иллюстрации к изобретению RU 2 345 212 C1

Реферат патента 2009 года СПОСОБ ЦЕМЕНТИРОВАНИЯ СКВАЖИН

Способ цементирования скважин включает закачивание газированного тампонажного раствора в обсадную колонну, продавливание его в затрубное пространство в два этапа с учетом дегазации газированного тампонажного раствора во время его активации в скважине, а также с учетом сжимаемости газированного тампонажного раствора в термобарических скважинных условиях. Обеспечивается повышение качества цементирования скважин газированным тампонажным раствором, путем разрушения дефектной структуры на первой стадии структурообразования (активации) газированной тампонажной суспензии за счет поэтапного продавливания газированного тампонажного раствора с учетом его устойчивости. 3 ил.

Формула изобретения RU 2 345 212 C1

Способ цементирования скважины, включающий закачивание буферной жидкости, газированного тампонажного раствора в обсадную колонну, продавливание газированного тампонажного раствора в затрубное пространство, отличающийся тем, что объем закачиваемого в скважину газированного тампонажного раствора V с учетом его устойчивости определяют из выражения:

где VI - объем газированной тампонажной суспензии на момент окончания первой фазы закачивания, м3;

ϕ - устойчивость газированной тампонажной суспензии, %,

а процесс продавливания осуществляют с учетом дегазации газированного тампонажного раствора во время его активации в скважине и с остановкой на время

T=T2-T1,

где T1 - время окончания первого этапа, мин;

Т2 - время первой стадии структурообразования газированного тампонажного раствора с учетом термобарических (скважинных) условий, мин.

Документы, цитированные в отчете о поиске Патент 2009 года RU2345212C1

Способ цементирования скважин 1982
  • Еременко Валентин Васильевич
SU1134700A1
Способ цементирования обсадных колонн 1987
  • Медведев Михаил Федорович
  • Тобатаев Магжан Габбасович
  • Исмаилов Абдулахат Абдукаримович
SU1454953A1
Способ цементирования скважин 1987
  • Бедный Василий Ильич
  • Пахмурин Геннадий Алексеевич
SU1609965A1
Пластификатор тампонажных растворов 1989
  • Клюсов Анатолий Александрович
  • Ивченко Юрий Тимофеевич
  • Мнацаканов Александр Васильевич
  • Рябоконь Александр Александрович
  • Урманчеев Вячеслав Исмагилович
  • Кашникова Лидия Леонидовна
SU1670097A1
Способ цементирования скважины 1988
  • Гузев Валентин Дмитриевич
  • Гаврилюк Александр Егорович
SU1707185A1
Способ цементирования обсадных колонн 1989
  • Петриченко Виталий Павлович
  • Баев Михаил Леонидович
SU1723308A1
СПОСОБ ВОССТАНОВЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА ГАЗОВОЙ СКВАЖИНЫ 2000
  • Тагиров К.М.
  • Дубенко В.Е.
  • Андрианов Н.И.
  • Зиновьев В.В.
RU2183724C2
Способ тампонирования обсадной колонны в скважине 2002
  • Сусоколов А.Н.
  • Тупысев М.К.
RU2223387C1
УСТРОЙСТВО И СПОСОБ ЦЕМЕНТИРОВАНИЯ СКВАЖИН 2005
  • Двойников Михаил Владимирович
  • Овчинников Василий Павлович
  • Овчинников Павел Васильевич
  • Пролубщиков Сергей Васильевич
  • Третьяков Александр Андреевич
RU2289015C1

RU 2 345 212 C1

Авторы

Гребенщиков Владимир Михайлович

Двойников Михаил Владимирович

Даты

2009-01-27Публикация

2007-06-04Подача