АМОРФИЗИРОВАННОЕ ЯДЕРНОЕ ТОПЛИВО Российский патент 2009 года по МПК G21C3/50 

Описание патента на изобретение RU2352003C2

Изобретение относится к области ядерной энергетики, преимущественно к перспективному развитию ториевой энергетики.

Известно аморфизированное ядерное топливо, состоящее из суспензии, содержащей дисперсионную среду, например, в виде тяжелой воды, и дисперсную фазу, выполненную из твердых топливных микрочастиц размером менее 10-ти мкм, содержащих делящиеся изотопы урана и (или) плутония, (доклад Де Брейн, Германс, Плас, Схе, Вэнт (Нидерланды) «Устройство малогабаритного прототипа гомогенного энергетического реактора с топливом в виде суспензии окиси урана». I Международная конференция по мирному использованию атомной энергии, 1955 год).

Недостатками известного технического решения являются:

недостаточная механическая прочность керамических микрочастиц из двуокиси урана и тория и их предрасположенность к неприемлемому прогрессирующему измельчению;

отрицательное проявление в контуре рециркуляции такого топлива абразивных свойств применяемых керамических топливных микрочастиц;

низкая плотность концентрации тяжелых ядер в топливных микрочастицах.

Задачей настоящего изобретения является повышение прочности топливных микрочастиц, практически полное исключение отрицательных абразивных свойств и обеспечение максимально возможной концентрации тяжелых ядер в микрочастицах топлива, повышение устойчивости.

Эта задача достигается тем, что в аморфизированном ядерном топливе, состоящем из суспензии, содержащей дисперсионную среду, например, в виде тяжелой воды, и дисперсную фазу, выполненную из твердых топливных микрочастиц размером менее 10-ти мкм, содержащих делящиеся изотопы урана и (или) плутония, твердые топливные микрочастицы выполнены из металлов, например, из сплавов на основе металлического тория с легирующей присадкой уран-235 и (или) плутоний-239, при этом указанные металлические топливные микрочастицы выполнены с аморфной структурой.

Кроме того, в аморфизированном ядерном топливе дисперсная фаза выполнена в виде микрочастиц монофракционного состава.

Дисперсная фаза топливной суспензии дополнительно может содержать микрочастицы, например, аморфизированного бериллия и (или) углерода.

Для обеспечения предельно высокой химической устойчивости структуры металлических микрочастиц, в частности, в тяжелой воде, предпочтительно используемой в качестве дисперсионной среды, предлагается применение вышеуказанных металлических микрочастиц не с их обычной кристаллической структурой, а с аморфной структурой, свойственной известным металлическим стеклам. Химическая устойчивость аморфной структуры экспериментально подтверждена известными многочисленными исследованиями металлических стекол, причем самого разнообразного состава, и принципиально определяется физико-химической природой именно аморфного состояния как такового (см. «Аморфные металлы», Судзуки К. и др., М. 1987 г.).

В итоге был экспериментально подтвержден, с одной стороны, целый ряд очень важных перспективных достоинств суспензионного ядерного топлива, но, с другой - одновременно вскрылись, как минимум, два решающих недостатка прототипа, а именно: отрицательное проявление в контуре рециркуляции такого топлива абразивных свойств применяемых керамических топливных микрочастиц, а также свойственная им сравнительно низкая плотность по ядерной концентрации тяжелых ядер. Вскрывшиеся недостатки на фоне конкурирующих альтернативных направлений привели к тому, что дальнейшие работы по использованию ядерного топлива в виде указанных водных суспензий были прекращены.

Описываемый переход к указанным металлическим топливным микрочастицам не только практически полностью исключает вышеупомянутые отрицательные абразивные свойства прототипа, но и обеспечивает такой топливной суспензии максимально возможную концентрацию в ней тяжелых ядер, в частности, делящихся веществ, свойственную применяемой теперь именно металлической форме.

Изобретение осуществляется путем специального получения мелкодисперсной фазы в виде аморфизированных металлических микрочастиц с характерным размером менее 10 мкм.

В качестве одного из примеров осуществления вышеуказанного является применение известных приемов лазерной аморфизации верхней поверхности исходного сплава с последующим использованием его микрофрезерования специальной фрезой с глубиной механического среза верхней аморфизированной поверхности порядка именно 10 мкм, то есть с итоговым получением аморфизированных микрочастиц в виде соответствующей микростружки.

С целью осуществления равномерного распределения получаемой дисперсной фазы в дисперсионной среде при соответствующем гидродинамическом воздействии в перспективном технологическом применении амортизированного топлива становится важной его следующая отличительная особенность. Так, в дисперсной фазе суспензии используют микрочастицы соответствующего монофракционного состава, то есть микрочастицы с примерно одинаковыми геометрическими формами и характерными размерами.

Дополнительным отличием описываемого амортизированного ядерного топлива является введение в общий состав дисперсной фазы применяемой суспензии микрочастиц также монофракционного состава, например, аморфизированных микрочастиц бериллия и (или) микрочастиц стеклоуглерода. Это связано с открывающейся перспективой известного в таких случаях повышения нейтронно-физических характеристик ядерного топлива.

В перспективном технологическом применении описываемого аморфизированного топлива становится важной его следующая отличительная особенность, а именно: в дисперсной фазе суспензии используют микрочастицы монофракционного состава, то есть микрочастицы с примерно одинаковыми геометрическим формами и характерными размерами.

Кроме того, исходя из соображений перспективного создания повышенных нейтронно-физических характеристик описываемого топлива, в состав дисперсной фазы суспензии вводятся дополнительные микрочастицы, например, аморфизированного бериллия и (или) углерода.

Похожие патенты RU2352003C2

название год авторы номер документа
ТОПЛИВНЫЙ СЕРДЕЧНИК ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА 2010
  • Большов Леонид Александрович
  • Солодов Александр Анатольевич
RU2419897C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ПРИ ДЕЛЕНИИ ЯДЕР ТЯЖЕЛЫХ ЭЛЕМЕНТОВ МЕДЛЕННЫМИ НЕЙТРОНАМИ 1995
  • Карелин Александр Иванович
  • Курносов Владимир Александрович
  • Карелин Владимир Александрович
  • Шпунт Лев Борисович
  • Завадский Михаил Игоревич
  • Хандорин Геннадий Петрович
  • Петров Эрнест Леонидович
RU2088980C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА МОЛИБДЕН-99 1996
  • Загрядский В.А.
  • Чувилин Д.Ю.
RU2102807C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-89 2000
  • Абалин С.С.
  • Алдошин А.И.
  • Барышников В.Н.
  • Григорьев Г.Ю.
  • Пономарев-Степной Н.Н.
  • Чувилин Д.Ю.
RU2181914C1
ЯДЕРНОЕ ТОПЛИВО ДЛЯ РЕАКТОРА С РАСПЛАВЛЕННОЙ АКТИВНОЙ ЗОНОЙ 2009
  • Бабиков Леонид Георгиевич
  • Бекетов Аскольд Рафаилович
  • Бекетов Дмитрий Аскольдович
  • Васин Борис Дмитриевич
  • Волкович Владимир Анатольевич
  • Долгирев Юрий Евгеньевич
  • Зыков Павел Григорьевич
  • Казанцев Герман Никандрович
  • Распопин Сергей Павлович
  • Скиба Олег Владимирович
RU2431206C2
ГИДРИДНОЕ ТОПЛИВО ДЛЯ ЯДЕРНОГО РЕАКТОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Клинов Анатолий Викторович
  • Старков Владимир Александрович
  • Пименов Василий Вениаминович
  • Казаков Лев Леонидович
RU2379773C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ ДЛЯ РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1996
  • Курина И.С.
  • Ермолаев Н.П.
RU2098870C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-89 1999
  • Григорьев Г.Ю.
  • Верещагин Ю.И.
  • Абалин С.С.
  • Маширев В.П.
  • Чувилин Д.Ю.
RU2155398C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА МОЛИБДЕН-99 2001
  • Абалин С.С.
  • Удовенко А.Н.
  • Чувилин Д.Ю.
RU2200997C2
МИКРОТВЭЛ ЯДЕРНОГО РЕАКТОРА 2015
  • Столяревский Анатолий Яковлевич
RU2578680C1

Реферат патента 2009 года АМОРФИЗИРОВАННОЕ ЯДЕРНОЕ ТОПЛИВО

Изобретение относится к области ядерной энергетики. Аморфизированное ядерное топливо представляет собой суспензию, содержащую дисперсионную среду. В качестве дисперсионной среды может использоваться, например, тяжелая вода. Дисперсная фаза выполнена из твердых топливных микрочастиц размером менее 10-ти мкм, содержащих делящиеся изотопы урана и (или) плутония. Твердые топливные микрочастицы выполнены из сплавов металлического тория с легирующей присадкой уран-235 и (или) плутоний-239. Металлические топливные микрочастицы исходно технологически созданы с аморфной структурой. Дисперсная фаза выполнена в виде микрочастиц монофракционного состава. В дополнение к топливным микрочастицам в состав дисперсной фазы введены вспомогательные микрочастицы, например, аморфизированного бериллия и (или) углерода. Топливо обеспечивает максимально возможную концентрацию тяжелых ядер для суспензии. Аморфная структура металлических микрочастиц обеспечивает их предельно высокую химическую устойчивость. Введение дополнительных микрочастиц обеспечивает повышенные нейтронно-физические характеристики. 2 з.п.ф-лы.

Формула изобретения RU 2 352 003 C2

1. Аморфизированное ядерное топливо, состоящее из суспензии, содержащей дисперсионную среду, например, в виде тяжелой воды, и дисперсную фазу, выполненную из твердых топливных микрочастиц размером менее 10 мкм, содержащих делящиеся изотопы урана и (или) плутония, отличающееся тем, что твердые топливные микрочастицы выполнены из сплавов на основе металлического тория с легирующей присадкой уран-235 и (или) плутоний-239, при этом указанные металлические топливные микрочастицы выполнены с аморфной структурой.

2. Аморфизированное ядерное топливо по п.1, отличающееся тем, что его дисперсная фаза выполнена в виде микрочастиц монофракционного состава.

3. Аморфизированное ядерное топливо по любому из пп.1 и 2, отличающиеся тем, что дисперсная фаза топливной суспензии дополнительно содержит микрочастицы, например, аморфизированного бериллия и (или) углерода.

Документы, цитированные в отчете о поиске Патент 2009 года RU2352003C2

Устройство для резки труб 1979
  • Пищик Евгений Израйлевич
  • Штеренсон Лазарь Давидович
  • Ставицкий Вениамин Моисеевич
  • Ачкасова Людмила Степановна
SU919810A2
ТВЕРДЫЙ МЕЛКОДИСПЕРСНЫЙ ТЕПЛОНОСИТЕЛЬ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Денискин В.П.
  • Дмитриев А.М.
  • Исаков В.П.
  • Курбаков С.Д.
  • Наливаев В.И.
  • Федик И.И.
RU2244351C2
Арматурная сталь 1980
  • Калмыков Валентин Владимирович
  • Дмитриев Юрий Владимирович
  • Узлов Иван Герасимович
  • Шнееров Яков Аронович
  • Гладуш Виктор Дмитриевич
  • Никитенко Валерий Иванович
  • Филонов Олег Васильевич
  • Гуров Вадим Николаевич
  • Ботвинский Виктор Яковлевич
  • Гончаренко Нина Федоровна
  • Грачев Валерий Иванович
  • Шарапад Михаил Иванович
  • Цыбанев Евгений Григорьевич
  • Кацевман Петр Соломонович
  • Артеев Гарри Михайлович
  • Мадатян Сергей Ашотович
  • Горячев Борис Парфирьевич
SU901330A1
GB 919523 А, 27.02.1963.

RU 2 352 003 C2

Авторы

Максимов Лев Николаевич

Даты

2009-04-10Публикация

2005-08-18Подача