АВИАЦИОННЫЙ ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ Российский патент 2009 года по МПК F02K3/06 

Описание патента на изобретение RU2353790C1

Область техники

Изобретение относится к авиадвигателестроению, а именно к разработке и созданию, в первую очередь, авиационных двухконтурных турбореактивных двигателей со смешением потоков воздуха наружного контура и газов за турбинами и общими форсажной камерой и соплом (ТРДДФ), может быть применено также при разработке двухконтурных бесфорсажных авиадвигателей (ТРДД), в том числе и двигателей с раздельными контурами.

Уровень техники

Для сверхзвуковых маневренных самолетов создан ряд ТРДДФ четвертого и пятого поколений в России (РД-33, АЛ-31Ф) и за рубежом (EJ-200, семейство двигателей М.88, F404, F414, F125). Все эти двигатели выполнены по одинаковой схеме, ставшей традиционной, включающей компрессор низкого давления (вентилятор), компрессор высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления, смеситель потоков воздуха наружного контура и газов внутреннего контура, общую для обоих контуров форсажную камеру и сверхзвуковое сопло.

Совершенствование параметров и характеристик двигателей этого класса идет, в первую очередь, в направлении повышения их удельной тяги, которая, при сравнении двигателей, оценивается на взлетном форсажном режиме -Rудф=Rфвзл/Gв∑, где Rфвзл и G в∑, соответственно, тяга и расход воздуха на входе в двигатель на этом режиме. Удельная тяга двигателя при требуемой величине Rфвзл прямо влияет на его размерность и массу.

Двигатели 70-х-80-х годов имели Rудф, несколько превышающую 1100 Н·с/кг, а двигатель F414-GE-400, начало разработки которого относится к 90-м годам, имеет Rудф>1350 Н·с/кг (Сведения по перечисленным зарубежным двигателям представлены в справочнике ЦИАМ «Иностранные авиационные двигатели», выпуск 14, под редакцией В.А.Скибина и В.И.Солонина. Москва, изд. Дом «Авиамир», 2005 г.).

Удельная тяга двигателя, прямо пропорциональная скорости истечения газов из сопла, при достигнутых предельных уровнях температур газов перед соплом на форсажном режиме, становится зависимой только от величины перепада давления газов в сопле. На взлетном режиме, при близких между собой (с разницей не более 3%) полных давлениях воздуха и газа в контурах на выходе из смесителя, величина перепада давления газов в сопле практически прямо определяется величиной полного давления воздуха в наружном контуре, т.е. для всех применяемых ТРДДФ традиционной схемы величина перепада давления газов в сопле зависит от степени повышения давления воздуха в вентиляторе πв*.

Поэтому повышение удельных тяг двигателей от Rудф≥1100 Н·с/кг до Rудф≥1350 Н·с/кг сопровождалось соответствующим увеличением πв*. На двигателе F414-GE-400 с Rудф≥1350 Н·с/кг установлен и самый высоконапорный вентилятор, обеспечивающий πв*=5.0.

Однако повышение πв* приводит к необходимости понижать степень двухконтурности двигателя на взлетном режиме (m о) для обеспечения приемлемого соотношения полных давлений в контурах на выходе из смесителя где - полные давления газа и воздуха, соответственно, контурах на выходе из смесителя.

На двигателе F414-GE-400 mо=0,29.

Дальнейшее снижение двухконтурности двигателя приближает двухконтурный двигатель к одноконтурному с соответствующим ухудшением его характеристик по удельному расходу топлива на бесфорсажных крейсерских режимах работы.

Кроме того, увеличение πв* повышает нагруженность турбины низкого давления, что может привести к увеличению ступеней турбины низкого давления.

Например, в планах дальнейшего развития двигателя F414-GE-400, наряду с другими мероприятиями по улучшению параметров двигателя, предусматривается увеличить πв* на 10% и заменить одноступенчатую турбину низкого давления на двухступенчатую.

Традиционная принципиальная схема двигателя, являющаяся базовой для двигателей РД-33, АЛ-31Ф, EJ-200 и двигателей семейств М.88, F404, F414 и F125 принята в качестве прототипа.

Сущность изобретения

Данным изобретением решается задача расширения арсенала средств, обеспечивающих повышение удельной тяги ТРДДФ; технический результат заключается в реализации этого назначения.

Существенные признаки:

- Ограничительные: авиационный двухконтурный турбореактивный двигатель, содержащий вентилятор, компрессор высокого давления, камеру сгорания, турбины высокого и низкого давления, смеситель и общие для обоих контуров форсажную камеру и сопло.

- Отличительные: за первой ступенью компрессора высокого давления, обеспечивающей на взлетном режиме степень повышения давления не более πIст*=1,4…1,5, выполнен кольцевой канал со спрямляющей решеткой, через который на всех режимах работы двигателя осуществляется постоянный перепуск части воздуха из-за ступени в спутный поток воздуха наружного контура за вентилятором.

Краткое описание чертежей

Сущность изобретения поясняется представленными чертежами:

На фиг.1 представлена принципиальная схема двухконтурного турбореактивного двигателя с каналом перепуска части воздуха из-за первой ступени компрессора высокого давления в поток воздуха наружного контура за вентилятором.

На фиг.2 представлена схема канала перепуска части воздуха из-за первой ступени компрессора в наружный контур в большем масштабе, чем на фиг.1.

На фиг.3 представлена цилиндрическая развертка спрямляющей решетки в канале перепуска воздуха.

Осуществление изобретения

Авиационный двухконтурный турбореактивный двигатель содержит вентилятор 1, компрессор высокого давления 2, камеру сгорания 3, турбину высокого давления 4, турбину низкого давления 5, смеситель 6, форсажную камеру 7 и сверхзвуковое сопло 8.

За первой ступенью 9 компрессора высокого давления 2, обеспечивающей на взлетном режиме степень повышения давления не более πIст*=1,4…1,5, выполнен постоянно открытый кольцевой канал 10 со спрямляющей решеткой 11, через который осуществляется перепуск части воздуха из-за первой ступени 9 компрессора высокого давления 2 в канал наружного контура 12 за вентилятором 1.

Ограничение степени повышения давления первой ступени 9 компрессора высокого давления 2 не более πIст*=1,4…1,5 вводится для исключения местных зон течения со звуковой скоростью на выходе воздуха из канала перепуска воздуха 10 за ступенью в канал наружного контура 12 за вентилятором 1. Спрямляющая решетка 11 в канале перепуска 10 обеспечивает осевое направление входа перепускаемого воздуха в канал наружного контура 12.

Поступление части воздуха из-за первой ступени 9 компрессора 2 с более высоким полным давлением, чем полное давление в потоке за вентилятором 1, обеспечивает повышение общего полного давления в потоке воздуха наружного контура перед смесителем 6 и далее, соответственно, общего полного давления газов на входе в форсажную камеру 7 и перед соплом 8, что увеличивает перепад давления газа в сопле и скорость истечения газа из сопла, повышая удельную тягу двигателя.

С поступлением в наружный контур 12 дополнительного воздуха из канала перепуска 10 увеличивается общая степень двухконтурности двигателя и повышается его экономичность на бесфорсажных режимах работы.

Похожие патенты RU2353790C1

название год авторы номер документа
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2002
  • Дембо Н.С.
RU2237176C1
УСТРОЙСТВО И СПОСОБ (ВАРИАНТЫ) ДЛЯ СТАБИЛИЗАЦИИ ПЛАМЕНИ В ФОРСАЖНОЙ КАМЕРЕ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2009
  • Кишалов Александр Евгеньевич
RU2403422C1
ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ С ФОРСАЖНОЙ КАМЕРОЙ 2008
  • Гольдинский Эммануил Израилевич
  • Бронштейн Давид Львович
  • Волков Павел Васильевич
  • Евграфов Юрий Федорович
  • Кобрин Михаил Залманович
RU2369765C1
БЕСФОРСАЖНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2017
  • Куница Сергей Петрович
  • Ланевский Тимур Маматкулович
  • Попарецкий Андрей Владимирович
RU2663440C1
Двухконтурный турбореактивный двигатель 1981
  • Дембо Николай Самуилович
SU1809146A1
Способ работы трехконтурного турбореактивного двигателя 2016
  • Эзрохи Юрий Александрович
  • Дрыгин Алексей Сергеевич
  • Кизеев Илья Сергеевич
RU2637153C1
СПОСОБ ОХЛАЖДЕНИЯ ТУРБИНЫ 2009
  • Письменный Владимир Леонидович
RU2423617C2
Двухконтурный турбореактивный двигатель 1972
  • Воронцов Александр Васильевич
  • Дембо Николай Самуилович
  • Люлька Архип Михайлович
SU1809145A1
Способ работы трехконтурного турбореактивного двигателя с форсажной камерой 2017
  • Эзрохи Юрий Александрович
  • Дрыгин Алексей Сергеевич
  • Кизеев Илья Сергеевич
RU2675637C1
Авиационная силовая установка 2016
  • Эзрохи Юрий Александрович
  • Каленский Сергей Мирославович
  • Морзеева Татьяна Андреевна
RU2644721C2

Реферат патента 2009 года АВИАЦИОННЫЙ ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Авиационный двухконтурный турбореактивный двигатель содержит вентилятор, компрессор высокого давления, камеру сгорания, турбины высокого и низкого давления, смеситель и общие для обоих контуров форсажную камеру и сопло. За первой ступенью компрессора высокого давления, обеспечивающей на взлетном режиме степень повышения полного давления не более πIст*=1,4…1,5, выполнен постоянно открытый кольцевой канал со спрямляющей решеткой, через который на всех режимах работы двигателя осуществляется перепуск части воздуха из-за ступени в спутный поток воздуха наружного контура за вентилятором. Изобретение повышает степень двухконтурности двигателя и повышает его экономичность на бесфорсажных режимах работы. 3 ил.

Формула изобретения RU 2 353 790 C1

Авиационный двухконтурный турбореактивный двигатель, содержащий вентилятор, компрессор высокого давления, камеру сгорания, турбины высокого и низкого давления, смеситель и общие для обоих контуров форсажную камеру и сопло, отличающийся тем, что за первой ступенью компрессора высокого давления, обеспечивающей на взлетном режиме степень повышения полного давления не более πIст*=1,4…1,5, выполнен постоянно открытый кольцевой канал со спрямляющей решеткой, через который на всех режимах работы двигателя осуществляется перепуск части воздуха из-за ступени в спутный поток воздуха наружного контура за вентилятором.

Документы, цитированные в отчете о поиске Патент 2009 года RU2353790C1

СПОСОБ БИОТЕСТИРОВАНИЯ ВОДЫ НА ЗАГРЯЗНЕНИЕ ТЯЖЕЛЫМИ МЕТАЛЛАМИ 2006
  • Цаценко Людмила Владимировна
  • Темиров Юрий Витальевич
  • Борсук Оксана Юрьевна
  • Гарькавый Константин Алексеевич
RU2315006C1
Центробежный эжекционный аппарат для абсорбции газов 1981
  • Селин Александр Николаевич
  • Ким Владимир Петрович
  • Соколов Алексей Александрович
  • Боханович Надежда Васильевна
  • Менделева Галина Ивановна
SU971443A2
US 4068471 A, 17.01.1978
СПОСОБ ПОЛУЧЕНИЯ ХЛЕБНОГО КВАСА 2015
  • Квасенков Олег Иванович
RU2578290C1
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 1988
  • Шевцов В.Ф.
RU1584492C
Двухконтурный турбореактивный двигатель 1973
  • Дембо Николай Самуилович
SU1809147A1

RU 2 353 790 C1

Авторы

Алексеев Юрий Сергеевич

Ивах Александр Федорович

Даты

2009-04-27Публикация

2007-09-27Подача