СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ГАЗОВОГО ПОТОКА ПО РАДИУСУ ДОМЕННОЙ ПЕЧИ Российский патент 2009 года по МПК C21B5/00 

Описание патента на изобретение RU2354708C1

Изобретение относится к черной металлургии и может быть использовано для определения оптимального распределения газового потока (ОРГ) по радиусу доменной печи, обеспечивающего максимальное использование тепловой и восстановительной энергии газового потока.

Известен способ определения оптимального распределения газового потока по радиусу доменной печи по данным о температуре и содержании двуокиси углерода в газе в различных точках радиуса колошника печи над уровнем засыпи, полученным с помощью горизонтальных зондов, вводимых в печь на момент измерения. Сопоставлением формы кривой радиального газораспределения с показателями плавки находится такая, при которой достигаются наилучшие ее показатели и которая является оптимальной для данных конкретных сырьевых и дутьевых условий работы доменной печи (А.Л.Брусов и др. Исследование параметров газа и распределения шихты на колошнике доменной печи с помощью зонда. «Сталь», 1992, №8, с.7-10).

Данный способ имеет следующие недостатки:

- найденные кривые ОРГ не универсальны и характерны только для тех сырьевых и дутьевых условий плавки, в которых они получены;

- вывод об оптимальности формы кривой радиального газораспределения, полученный в результате сопоставления ее с показателями доменной плавки, субъективен. Вид кривой позволяет только оценить распределение газового потока по радиусу печи, а для получения объективных данных об оптимальности кривой необходима ее количественная оценка и сопоставление найденного критерия с показателями работы доменной печи. Эта операция в данном способе не предусмотрена.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ определения оптимального распределения газового потока по радиусу печи, основанный на измерении температуры газа в верхней части доменной печи с помощью устанавливаемых над уровнем засыпи стационарных радиальных балок, в которых размещаются термопары для измерения температуры в различных точках радиуса колошника, и измерении состава вышедшего из печи общего колошникового газа, расчете по полученным данным количественных показателей распределения газового потока по радиусу печи и использования в доменной печи его восстановительной способности и сопоставлении их между собой для определения радиального газораспределения, при котором достигается наилучшее использование его восстановительной энергии (В.А.Заболотский и др. Непрерывный контроль газового потока в доменной печи №3 ЧМК. «Сталь», 1990, №6, с.14-16). Для количественной оценки распределения газового потока по радиусу печи расстояния между горячими спаями на радиальной балке рассчитаны так, чтобы они измеряли среднюю температуру газа в каждом из пяти равновеликих по площади колец (на оси печи - круга). В этом случае третья точка на радиальной балке делит площадь колошника печи на две равные части: «периферийную» и «центральную». Отсюда количественный показатель распределения газового потока по радиусу доменной печи (Кр) находили из следующего выражения:

Кр=tп/tц, дол. ед.,

где tп=0,4 t1+0,4 t2+0,2 t3 - средняя температура «периферийной» части радиуса колошника, град. С,

tц= 0,2 t3+0,4 t4+0,2 t5 - средняя температура «центральной» части радиуса колошника,

t1, t2, t3, t4, t5 - средняя температура газа в каждом из пяти равновеликих по площади колец (на оси печи - круга) от периферии к центру печи, град. С.

Основными недостатками данного способа являются:

- нарушения в распределении шихтовых материалов при загрузке их в печь, т.к. поток их при ссыпании в печь с загрузочного устройства пересекает стационарно установленные радиальные балки;

- низкая стойкость (от полгода до года) радиальных неохлаждаемых балок из-за периодического (каждые 5-7 мин) изгибающего, истирающего и вибрирующего воздействия загружаемых в доменную печь шихтовых материалов. Использование иногда охлаждения радиальных балок водой или азотом для удлинения срока их службы приводит к искажению данных о температуре газа в различных точках радиуса колошника;

- возможность замены радиальных балок в случае выхода их из строя только во время длительной остановки печи для ее ремонта, что может оставить доменную печь без контроля радиального газораспределения на длительное (от пяти до десяти лет) время от момента выхода из строя радиальной балки до начала ремонта печи.

Сущность предлагаемого изобретения, направленного на определение оптимального радиального распределения газового потока в доменной печи, включающего отбор газа и измерение температуры над уровнем засыпи, разделение площади колошника на пять равновеликих по площади колец, определение количественного показателя распределения газового потока по радиусу печи, оценку распределения газового потока по виду температурной кривой, отличается тем, что разделение площади колошника на пять равновеликих по площади колец осуществляют от оси печи до цилиндрической части защитных плит колошника, или скошенной их части, или воображаемой линии, проведенной от скошенной части защитных плит колошника до основания газоотвода, устанавливают термопары и измеряют температуру над уровнем засыпи под осями газоотводов в середине площади периферийного кольца и в газоотводах печи по их вертикальным осям, определяют среднее значение измеренных температур над уровнем засыпи под осью газоотводов печи в середине площади периферийного кольца и в газоотводах печи по их вертикальной оси, то есть среднюю температуру периферийного газа - tпс, °C и среднюю температуру колошникового газа - tкг, °C соответственно, и определяют количественный показатель радиального распределения газового потока по формуле Крс=tпс/tкг.

Внедрение предлагаемого изобретения устранит недостатки, свойственные прототипу:

- исключит нарушения в распределении ссыпающихся с загрузочного устройства шихтовых материалов вследствие отсутствия прямого контакта их с термопарами;

- исключит необходимость частой замены термопар из-за высокой стойкости периферийных термопар и термопар в газоотводах печи (стойкость их составляет обычно от ремонта до ремонта доменной печи);

- позволит вести непрерывный автоматический контроль радиального газораспределения в течение всей кампании печи.

Изобретение поясняется чертежами, где на фиг.1 приведена взаимосвязь показателей радиального газораспределения, полученных по показаниям радиальной балки, в которой размещены пять термопар, (Кр), и по показаниям периферийных термопар и термопар, установленных в газоотводах печи, (Крс); на фиг.2 - зависимость степени использования окиси углерода в доменной печи (ηсо) от показателя распределения температуры газа по радиусу печи (Крс).

На фиг.1 представлены результаты сопоставления, проведенного на доменной печи №2 НТМК, показателей радиального газораспределения, полученных по показаниям радиальной пятиточечной термопары, установленной над уровнем засыпи (Кр), и по показаниям периферийных термопар и термопар, установленных в газоотводах печи (Крс). Сопоставление величин обоих показателей радиального газораспределения показывает, что между ними существует линейная связь. Разброс экспериментальных точек объясняется тем, что Кр, характеризуя распределение газового потока только по одному диаметру печи, не может отражать его окружное газораспределение. Крс, наоборот, полнее отражает распределение температуры газа по периферии печи, но не учитывает всех особенностей распределения температуры газа в радиальном направлении. Отсюда можно сделать вывод о том, что Крс может характеризовать радиальное газораспределение не хуже, чем Кр, полученное более сложным способом.

На фиг.2 представлено сопоставление данных о распределении и использовании газового потока для получения оптимального радиального газораспределения, определяемого местоположением экстремума зависимости ηсо=(Крс).

Для осуществления предложенного способа доменная печь должна быть оборудована следующими техническими средствами.

Периферийные термопары, устанавливаемые над уровнем засыпи под осями газоотводов и измеряющие температуру газа в пятом (от оси печи) из пяти равновеликих по площади колец, на которые разделена площадь колошника. Размещение термопар непосредственно под осями газоотводов печи исключит влияние на их показания смещения газового потока в горизонтальном направлении при входе в них. Размещение термопар в центре по площади пятого (от оси печи) кольца позволит получать информацию о средней температуре периферийной части колошника, наиболее важной с точки зрения работы газового потока.

Термопары в газоотводах печи, устанавливаемые в их вертикальной части по их осям. Такая установка обеспечит получение информации о средней температуре колошникового газа или, что то же самое, о средней температуре газа по радиусу печи, т.к. численно они должны быть равны.

Газоанализатор, анализирующий состав колошникового газа, вышедшего из печи, на содержание в нем СО и СО2. Полученные данные позволят определять полноту использования восстановительной способности газового потока, определяемую по величине ηсо.

Расчет точки, в которой будет проводиться измерение температуры периферийных газов, проводится следующим образом.

В зависимости от величины радиуса колошника (R) определяется его площадь (Sк). Для доменной печи №4 ММК объемом 1380 м куб. радиус колошника равен 3,3 м. Отсюда:

Sк=πR2=3,14×3,32=34,2 м2.

Из принятого условия, что периферийные термопары должны измерять температуру в центре по площади одного из пяти равновеликих по площади колец, на которые делится площадь колошника, следует, что это кольцо делится, в свою очередь, на два равных по площади кольца. Следовательно, таких равновеликих по площади колец будет десять, а площадь каждого из них будет равна:

Sj=Sк:10=34,2:10=3,42 м2.

Отсюда расстояние, на котором должны находиться спаи термопар от оси печи (R1), определяется по следующему выражению:

После оборудования доменной печи перечисленными техническими средствами дальнейшее осуществление предлагаемого способа возможно как с использованием вычислительной техники, так и без нее.

В первом случае очередность операций должна быть следующей:

- непрерывный опрос показаний периферийных термопар, термопар в газоотводах печи и газоанализатора;

- нахождение средних значений искомых величин за выбранный период усреднения;

- расчет показателя распределения температуры газа по радиусу печи (Крс) по выражению

Крс=tпс/tкг, дол. ед.,

где tпс - среднее значение измеренных температур над уровнем засыпи под осями газоотводов в середине площади пятого от оси печи кольца (периферийного кольца), °С,

tкг - среднее значение измеренных температур в газоотводах печи по их вертикальным осям, °С;

- расчет показателя степени использования СО по следующему выражению:

ηco=СО2/(СО+СО2), дол. ед.,

где СО и СО2 - содержание окиси и двуокиси углерода в колошниковом газе на выходе из печи, дол. ед.;

- накопление в памяти ЭВМ выбранного числа значений Крс и ηсо, полученных вышеописанным способом;

- определение экстремума зависимости ηco=f(Крс) с помощью статистической модели вида

где α0, α1 и α2 - коэффициенты регрессии модели, определяемые методом наименьших квадратов;

- вывод на экран дисплея графика видеокадра в координатах "Степень использования окиси углерода" и "Показатель распределения температуры газа по радиусу печи", аналогичного изображенному на фиг.2, исходных данных и линии регрессии. Из фиг.2 видно, что оптимальное радиальное газораспределение, при котором достигается максимальное использование окиси углерода, достигалось при значениях Крс=0,95;

- продолжение опроса показаний термопар и газоанализатора; усреднение полученных данных; расчет Крс и ηco; занесение последних результатов расчета в базу данных, исключив при этом первые значения (т.е. проводя непрерывное обновление базы данных); поиск линии регрессии; нанесение на видеограмму, подобную изображенной на фиг.2, последних результатов расчета (исключив первые) и линии регрессии.

Осуществление предлагаемого способа на доменных печах, не оборудованных вычислительной техникой, возможно за счет периодически проводимой обработки данных диаграмм контрольно-измерительных приборов с записью показаний периферийных термопар, установленных на периферии печи над уровнем засыпи и в газоотводах печи и газоанализаторов; усреднения полученных значений за установленные периоды работы печи; определения количественных показателей распределения и использования газового потока за выбранные периоды усреднения; сопоставления их между собой путем построения графика, подобного изображенному на фиг.2; проведения линии регрессии и определения по ней оптимального значения

Крс, при котором достигается максимальное использование окиси углерода.

Осуществление способа было проведено на доменной печи №4 ОАО «ММК» с радиусом колошника 3,3 м. Наиболее просто установку периферийных термопар над уровнем засыпи можно осуществить над защитными плитами колошника. Разделение площади колошника на пять равновеликих по площади колец осуществили от оси печи до воображаемой линии, проведенной от скошенной части защитных плит колошника до основания газоотвода. В этом случае расстояние от оси печи до пересечения оси периферийной термопары с воображаемой линией, проведенной от скошенной части защитных плит колошника до основания газоотвода (скорректированный радиус колошника - Rк), составляло 3,62 м.

Отсюда площадь колошника в этой части печи

Sкк=πRк2=3,14×3,622=41,1 м2.

Расстояние, на котором должны находиться спаи термопар от оси печи (R), определяли (как и в предыдущем случае при определении R1) по следующему выражению:

Таким образом, для решения поставленной задачи устанавливаемые термопары должны быть выдвинуты во внутрь печи на 190 мм (3,62 м - 3,43 м=0,19 м) от воображаемой линии, проведенной от скошенной части защитных плит колошника до основания газоотвода. Именно таким образом были установлены на ремонте доменной печи №4 четыре периферийные термопары над уровнем засыпи под осями газоотводов.

Четыре термопары в газоотводах печи были установлены по их осям в их вертикальной части.

Эксплуатация этих термопар на доменной печи №4 показала, что наилучшие показатели работы печи были достигнуты при следующих данных:

- среднее значение измеренных температур над уровнем засыпи под осями газоотводов в середине площади периферийного кольца (tпс) составляло 140°С;

- среднее значение измеренных температур в газоотводах печи по их вертикальным осям (tкг) составляло 200°С;

- показатель распределения температуры газа по радиусу печи (Крс) составлял

Крс=tпс/tкг=140/200=0,7.

Похожие патенты RU2354708C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО РАДИАЛЬНОГО ГАЗОРАСПРЕДЕЛЕНИЯ В ДОМЕННОЙ ПЕЧИ 2006
  • Паршаков Владимир Михайлович
  • Гибадулин Масхут Фатыхович
  • Мавров Александр Леонидович
  • Сединкин Виктор Иосифович
  • Маевский Виктор Александрович
RU2335548C2
СПОСОБ КОНТРОЛЯ РАСПРЕДЕЛЕНИЯ ШИХТОВЫХ МАТЕРИАЛОВ ПО СЕЧЕНИЮ ДОМЕННОЙ ПЕЧИ 1992
  • Шулико Станислав Трофимович[Ua]
  • Воронин Геннадий Юрьевич[Ua]
  • Бузоверя Михаил Трофимович[Ua]
  • Цейтлин Мак Аронович[Ru]
  • Маулетов Нарулат Хамитович[Ru]
  • Таран Виктор Павлович[Ru]
RU2095421C1
СПОСОБ ЗАГРУЗКИ ДОМЕННОЙ ПЕЧИ 1991
  • Большаков В.И.
  • Рослик Н.А.
  • Шутылев Ф.М.
  • Икконен А.К.
  • Степаненко В.Л.
  • Зернов В.М.
RU2022025C1
СПОСОБ ВЕДЕНИЯ ДОМЕННОЙ ПЛАВКИ 1982
  • Мишин П.П.
  • Шишханов Т.С.
  • Цейтлин М.А.
  • Туктамышев И.Ш.
  • Таран В.П.
  • Загайнов Л.С.
  • Савелов Н.И.
  • Халецкий Б.Е.
  • Головченко А.С.
  • Даньшин В.В.
SU1100938A1
Способ ведения доменной плавки 1980
  • Гришкова Алла Александровна
  • Френкель Макс Моисеевич
  • Вегман Евгений Феликсович
  • Бузоверя Михаил Трофимович
  • Бургутин Юрий Иванович
  • Хомич Иван Тимофеевич
SU981371A1
СПОСОБ УПРАВЛЕНИЯ ОКРУЖНЫМ РАСПРЕДЕЛЕНИЕМ ШИХТОВЫХ МАТЕРИАЛОВ НА КОЛОШНИКЕ ДОМЕННОЙ ПЕЧИ 1991
  • Большаков В.И.
  • Рослик Н.А.
  • Зарембо А.Ю.
  • Шутылев Ф.М.
  • Степаненко В.Л.
  • Икконен А.К.
  • Улахович В.А.
RU2015169C1
Способ определения радиального распределения газового потока на колошнике доменной печи 1985
  • Мирошниченко Борис Иванович
  • Большаков Вадим Иванович
  • Байрака Михаил Николаевич
  • Можаренко Николай Михайлович
  • Диденко Николай Мефодиевич
  • Пронькин Владислав Евгеньевич
  • Гринштейн Наум Шлемович
  • Козин Юрий Анатольевич
  • Шулико Станислав Трофимович
  • Почекайло Иван Ефимович
  • Дубинчук Валентин Леонидович
SU1330163A1
Способ ведения доменной плавки 2022
  • Виноградов Евгений Николаевич
  • Калько Андрей Александрович
  • Волков Евгений Александрович
  • Каримов Михаил Муртазакулович
  • Теребов Александр Леонидович
  • Бабоедов Евгений Александрович
RU2798507C1
Способ регулирования газового потока в доменной печи 1986
  • Тарасов Владимир Петрович
  • Темнохуд Николай Николаевич
  • Крылов Игорь Эдуардович
  • Томаш Александр Анатольевич
SU1315475A1
Колошниковое устройство доменнойпЕчи 1979
  • Бурова Валентина Ивановна
  • Дейко Александр Иванович
  • Тарасов Владимир Петрович
  • Малый Валентин Васильевич
  • Храпич Валентина Ивановна
SU808534A2

Реферат патента 2009 года СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ГАЗОВОГО ПОТОКА ПО РАДИУСУ ДОМЕННОЙ ПЕЧИ

Изобретение относится к области металлургии, в частности к определению оптимального распределения газового потока по радиусу доменной печи. Способ включает отбор газа и измерение его температуры над уровнем засыпи шихты. Площадь колошника разделяют на пять равновеликих по площади колец от оси печи до цилиндрической части защитных плит колошника, или скошенной их части, или воображаемой линии, проведенной от скошенной части защитных плит колошника до основания газоотвода. Затем устанавливают термопары и измеряют температуру периферийного газа под осями газоотводов в середине площади периферийных колец и температуру колошникового газа в газоотводах печи по их вертикальным осям, а определение количественного показателя распределения газового потока по радиусу печи производят по формуле: Kpc=tnc/tкг, где tпс - средняя температура периферийного газа, °С; tкг - средняя температура колошникового газа. Использование изобретения обеспечивает непрерывный автоматический контроль радиального газораспределения в печи. 2 ил.

Формула изобретения RU 2 354 708 C1

Способ определения оптимального радиального распределения газового потока в доменной печи, включающий отбор газа и измерение температуры над уровнем засыпи, разделение площади колошника на пять равновеликих по площади колец, определение количественного показателя распределения газового потока по радиусу печи, оценку распределения газового потока по виду температурной кривой, отличающийся тем, что разделение площади колошника на пять равновеликих по площади колец осуществляют от оси печи до цилиндрической части защитных плит колошника или скошенной их части, или воображаемой линии, проведенной от скошенной части защитных плит колошника до основания газоотвода, устанавливают термопары и измеряют температуру над уровнем засыпи под осями газоотводов в середине площади периферийных колец и в газоотводах печи по их вертикальным осям, определяют среднее значение измеренных температур над уровнем засыпи под осью газоотводов печи в середине площади периферийных колец и в газоотводах печи по их вертикальной оси, то есть среднюю температуру периферийного газа - tпс, °С и среднюю температуру колошникового газа - tкг, °С соответственно, и определяют количественный показатель радиального распределения газового потока по формуле: Крс=tпс/tкг.

Документы, цитированные в отчете о поиске Патент 2009 года RU2354708C1

ЗАБОЛОТСКИЙ В.А
и др
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
- Сталь, №6, с.14-16
Способ контроля распределения и использования газа в доменной печи 1987
  • Брусов Лев Петрович
  • Васюра Геннадий Григорьевич
  • Гордиенко Владимир Артемович
  • Анищенко Юрий Васильевич
  • Минаев Виктор Михайлович
SU1604858A1
СПОСОБ ВЕДЕНИЯ ДОМЕННОЙ ПЛАВКИ 1982
  • Мишин П.П.
  • Шишханов Т.С.
  • Цейтлин М.А.
  • Туктамышев И.Ш.
  • Таран В.П.
  • Загайнов Л.С.
  • Савелов Н.И.
  • Халецкий Б.Е.
  • Головченко А.С.
  • Даньшин В.В.
SU1100938A1
Способ ведения доменной плавки 1980
  • Гришкова Алла Александровна
  • Френкель Макс Моисеевич
  • Вегман Евгений Феликсович
  • Бузоверя Михаил Трофимович
  • Бургутин Юрий Иванович
  • Хомич Иван Тимофеевич
SU981371A1
СПОСОБ КОНТРОЛЯ ГАЗОРАСПРЕДЕЛЕНИЯ В ДОМЕННОЙ ПЕЧИ 1998
  • Москалина Федор Николаевич
  • Третяк А.А.(Ru)
  • Цейтлин М.А.(Ru)
  • Зуев Г.П.(Ru)
  • Юрин Н.И.(Ru)
  • Грунин С.М.(Ru)
  • Зотов А.Н.(Ru)
  • Загайнов Л.С.(Ru)
RU2147613C1

RU 2 354 708 C1

Авторы

Паршаков Владимир Михайлович

Бодяев Юрий Алексеевич

Гибадулин Масхут Фатыхович

Мавров Александр Леонидович

Канин Леонид Сергеевич

Маевский Виктор Александрович

Чевычелов Андрей Васильевич

Даты

2009-05-10Публикация

2007-06-28Подача