Изобретение относится к машиностроению, в частности к вакуумным роторным насосам, которые можно использовать в автомобильной промышленности для создания вакуума в усилителях тормозного привода автомобиля, а также в гидравлических или пневматических системах. Известна роторно-пластинчатая машина [RU 2146338 С1, 10.03.2000, F04C 2/344], которая может быть использована в насосах, компрессорах, гидромоторах, пневмодвигателях, детандерах. Машина содержит корпус с крышками, в которых расположены соответственно распределительные шайбы с каналами для подвода и отвода рабочей среды. Внутри корпуса установлены статор на опорах качения с возможностью вращения относительно корпуса и эксцентрично расположенный ротор (с величиной эксцентриситета относительно статора), в радиальных пазах которого подвижно установлены пластины. На торцевых поверхностях ротора в кольцевых пазах установлены кольца с возможностью перемещения в радиальных направлениях. Величина наружного диаметра каждого кольца определяется по формуле d=D-2h, где D - внутренний диаметр статора, h - высота пластины. Повышается надежность машины путем упрощения конструкции.
Недостатками представленного в качестве аналога насоса являются большое количество деталей, несопоставимое с решаемой задачей, и сложность в изготовлении и монтаже деталей и насоса в целом.
В качестве прототипа выбран известный вакуумный пластинчато-роторный насос [RU 2195582 С2, 27.12.2002, F04C 2/344], содержащий цилиндрический корпус с торцевыми крышками, с входным и выходным штуцерами, размещенный на валу эксцентрично корпусу ротор, включающий расположенные в радиальных пазах рабочие пластины, причем зазоры между соединениями насоса уплотнены рабочей жидкостью, отличающийся тем, что рабочей жидкостью является вода. Водой уплотнены зазоры между соединениями внутри насоса, а для подачи воды в насос и ее непрерывной циркуляции во время рабочего цикла в роторе выполнены торцевые кольцевые проточки, в одной из торцевых крышек корпуса расположены две взаимно перпендикулярные, связанные между собой полости, причем первая полость перпендикулярна оси вращения ротора, связана перепускным каналом с одной из кольцевых проточек ротора и в ней установлен регулировочный винт, а во второй полости помещен конец ниппеля для подачи воды от источника.
Недостатками представленного прототипа является необходимость сложного расчета, точного изготовления деталей и точной сборки насоса для выставки оптимальных осевых зазоров между ротором и торцевыми крышками для предотвращения задевания этих деталей во всем температурном диапазоне условий эксплуатации. При увеличенных осевых зазорах уменьшается степень компрессии, а соответственно и КПД насоса. Кроме того, при соединении деталей вал - ротор с цилиндрическими поверхностями при изменении температуры возможно проворачивание относительно друг друга вышеназванных деталей, что ведет, как минимум, к снижению производительности насоса.
Задачей, на решение которой направлено данное изобретение, является упрощение конструкции насоса, повышение КПД, повышение глубины предельного вакуума, снижение до минимума трения между торцами ротора и плоскостями крышки и корпуса при максимизации компрессии насоса. Задачей, на решение которой направлено данное изобретение, является упрощение конструкции насоса, повышение КПД, повышение глубины продольного вакуума, снижение до минимума трения между торцами ротора и плоскостями крышки и корпуса при максимизации компрессии насоса.
Поставленная задача решается за счет того, что в вакуумном пластинчато-роторном насосе, содержащем цилиндрический корпус с рабочей полостью, торцевую крышку, прокладку, входной штуцер, выходной штуцер, переходник, ротор, размещенный на валу эксцентрично корпусу с, по меньшей мере, четырьмя пластинами, расположенными в радиальных пазах ротора центрально симметрично оси ротора с возможностью радиального перемещения, подшипники качения, стопорное кольцо, манжету и шкив с крепежными деталями, согласно изобретению пластины расположены с возможностью осевого перемещения, посадка ротора на вал выполнена с минимальным гарантированным зазором с возможностью осевого самоцентрирования ротора по валу относительно полости корпуса и крышки во время работы насоса за счет скользящей посадки, причем на большей части вала посадка выполнена цилиндрической, другая меньшая часть вала снабжена элементом фиксации против проворота, например цилиндром с лысками.
Расчет скользящей посадки вала с ротором для обеспечения осевого зазора между ротором с валом и полостью корпуса и крышки насоса применительно для конкретного исполнения на заводе-заявителе.
Ротор - ⌀17+0,05 +0,01; ⌀15,8+0,1; 12+0,12 +0,1;
Вал - ⌀17-0,016 -0,027; ⌀15,8-0.05 -0,15; 12-0,1 -0,2.
По размеру ⌀17 (Е) Фиг.3
Δ=⌀17+0,05 +0,01-⌀17-0,016 -0,027=0+0,077 +0,026;
По размеру ⌀15,8 (Г) Фиг.2
Δ=⌀15,8+0,1-⌀15,8-0,05 -0,15=0+0,25 +0,05;
По размеру 12 (Д) Фиг.2
Δ=12+0,2 +0,1-12-0,1 -0,2=0+0,4 +0,2;
Высота полости между крышкой и корпусом - 49+0,050 (и) Фиг.4:
Высота ротора - 49-0,050 -0,075; (Ж) Фиг.4
Δ=49+0,050-49-0,050 -0,075=0+0,125 +0,050;
Δ/2=0+0,0625 +0,025;
Сущность изобретения иллюстрируется следующими чертежами и расчетами: на фиг.1 - общий вид насоса в разрезе, на фиг.2 - разрез А-А в увеличенном масштабе, на фиг.3 - разрез Б-Б, на фиг.4 выноска В в увеличенном масштабе. Насос содержит цилиндрический корпус 1 с выходным штуцером 12, прокладку 2 для герметизации, торцевую крышку 3 и установленный на шарикоподшипниках 4 и 5 эксцентрично корпусу вал 11 с ротором 6 и с пластинами 7, расположенными в пазах ротора центрально симметрично относительно оси ротора. На торцевой крышке 3 имеется входной штуцер 8, переходник 9 для подачи рабочей жидкости. В качестве рабочей жидкости может быть использовано машинное масло, которым во время рабочего цикла уплотняются все зазоры между пластинами, ротором и корпусом. В корпусе 1 расположены стопорное кольцо 17 для фиксации подшипников 5, манжета 18 для герметизации. На валу 11 установлен шкив 10, закрепленный болтом 14 с шайбами 15 и 16. Посадка ротора 6 на вал 11 выполнена с минимальным гарантированным зазором с возможностью осевого самоцентрирования ротора 6 по валу 11 относительно полости корпуса 1 и плоскостью крышки 3 во время работы насоса за счет скользящей посадки. На большей части вала 11 посадка выполнена цилиндрической, другая меньшая часть вала 11 снабжена элементом фиксации против проворота в виде цилиндра с лысками.
Работа насоса осуществляется следующим образом. При запуске насоса масло из системы двигателя через переходник 9 поступает во внутреннюю полость насоса. При включении насоса вращение от электродвигателя (не показан) через клиноременную передачу и шкив 10 передается валу 11, ротору 6 с пластинами 7 с возможностью радиального и осевого перемещения для предотвращения затирания и заклинивания ротора с пластинами в корпусе. Посадка ротора 6 на вал 11 выполнена с гарантированным зазором для возможности осевого самоцентрирования ротора 6 по валу 11 относительно полости корпуса 1 и плоскостью крышки 3. Зазор выполнен минимальным для предотвращения разбаланса ротора. На большей части вала 11 посадка выполнена цилиндрической, другая меньшая часть вала 11 снабжена элементом фиксации в виде цилиндра с лысками для предотвращения проворота ротора по валу. Под действием центробежной силы пластины 7 и масло отбрасываются к внутренним стенкам корпуса 1. Масло заполняет все зазоры между соединениями насоса. В процессе работы насоса масло поступает в насос постоянно и, пройдя через него, уносится потоком газа через выходной штуцер 12. При вращении ротора 6 пластины 7 прижимаются к стенкам корпуса 1, обеспечивая изменение объема рабочей камеры 13, образующейся поверхностями корпуса 1, ротора 6 и пластин 7. В начале цикла объем камеры 13 возрастает до максимального значения (в конце процесса всасывания), затем уменьшается, обеспечивая процесс сжатия газа до соответствующего давления нагнетания. Выхлоп газа вместе с использованным маслом осуществляется через выходной штуцер 12, а поступление газа в рабочую камеру 13 из откачиваемого объема (не показан) - через входной штуцер 8. За один оборот ротора 6 совершается четыре рабочих цикла. Шкив 10, насаженный на вал 11, крепится болтом 14 с шайбой 15 и пружинной шайбой 16. В пазу корпуса 1 находится стопорная шайба 17 для осевого стопорения подшипников 5. Для защиты подшипников 5 от продуктов окружающей среды в корпусе 1 предусмотрена армированная манжета 17.
Предлагаемое техническое устройство прошло все штатные испытания на дизельных двигателях автомобилей ГА3-3309 и ГА3-33081 ОАО «ГАЗ», показало хорошие результаты по основным техническим характеристикам.
название | год | авторы | номер документа |
---|---|---|---|
ВАКУУМНЫЙ ПЛАСТИНЧАТО-РОТОРНЫЙ НАСОС | 2007 |
|
RU2358158C2 |
НАСОС ВАКУУМНЫЙ ПЛАСТИНЧАТО-РОТОРНЫЙ | 2016 |
|
RU2610638C1 |
РОТОРНАЯ МАШИНА | 2000 |
|
RU2170835C1 |
МНОГОФУНКЦИОНАЛЬНАЯ ЭЛЛИПСОИДНАЯ ТРЁХЛОПАСТНАЯ РОТОРНАЯ МАШИНА | 2023 |
|
RU2804163C1 |
ТРЕХСЕКЦИОННЫЙ РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ | 1994 |
|
RU2084661C1 |
РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ | 2016 |
|
RU2613012C1 |
ЭЖЕКТОРНО-ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ РОТОРНО-ЛОПАСТНОГО ТИПА | 2013 |
|
RU2553920C2 |
ВАКУУМНЫЙ ПЛАСТИНЧАТО-РОТОРНЫЙ НАСОС | 2000 |
|
RU2195582C2 |
РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 2010 |
|
RU2431751C1 |
РОТОРНАЯ МАШИНА С ВНУТРЕННИМ ЗАЦЕПЛЕНИЕМ | 2005 |
|
RU2294436C1 |
Изобретение относится к машиностроению, в частности к вакуумным роторным насосам для автомобильных двигателей. Вакуумный пластинчато-роторный насос содержит цилиндрический корпус с рабочей полостью, торцевую крышку, прокладку, входной штуцер, выходной штуцер, переходник, ротор, размещенный на валу эксцентрично корпусу с, по меньшей мере, четырьмя пластинами, расположенными в радиальных пазах ротора центрально симметрично оси ротора с возможностью радиального перемещения, подшипники качения, стопорное кольцо, манжету и шкив с крепежными деталями. Пластины расположены с возможностью осевого перемещения. Посадка ротора на вал выполнена с минимальным гарантированным зазором с возможностью осевого самоцентрирования ротора по валу относительно полости корпуса и крышки во время работы насоса за счет скользящей посадки. На большей части вала посадка выполнена цилиндрической, другая меньшая часть вала снабжена элементом фиксации против проворота, например цилиндром с лысками. Упрощается конструкция насоса, повышается КПД и глубина предельного вакуума, снижается до минимума трение между торцами ротора и плоскостями крышки и корпуса при максимизации компрессии насоса. 4 ил.
Вакуумный пластинчато-роторный насос, содержащий цилиндрический корпус с рабочей полостью, торцевую крышку, прокладку, входной штуцер, выходной штуцер, переходник, ротор, размещенный на валу эксцентрично корпусу и, по меньшей мере, с четырьмя пластинами, расположенными в радиальных пазах ротора центрально симметрично оси ротора с возможностью радиального перемещения, подшипники качения, стопорное кольцо, манжету и шкив с крепежными деталями, отличающийся тем, что пластины расположены с возможностью осевого перемещения, посадка ротора на вал выполнена с минимальным гарантированным зазором с возможностью осевого самоцентрирования ротора по валу относительно полости корпуса и крышки во время работы насоса за счет скользящей посадки, причем на большей части вала посадка выполнена цилиндрической, другая, меньшая, часть вала снабжена элементом фиксации против проворота, например цилиндром с лысками.
ВАКУУМНЫЙ ПЛАСТИНЧАТО-РОТОРНЫЙ НАСОС | 2000 |
|
RU2195582C2 |
Пластинчатая гидромашина | 1979 |
|
SU848753A1 |
Винтовая машина | 1981 |
|
SU981687A1 |
JP 10131873 А, 19.05.1998 | |||
Устройство для загрузки гартоплавиль-НОгО КОТлА | 1979 |
|
SU835832A1 |
JP 59054790 А, 10.05.1990. |
Авторы
Даты
2009-06-27—Публикация
2007-10-15—Подача