Изобретение относится к области ультразвуковой измерительной техники и может быть использовано при акустических исследованиях биологических или технических сред, которые с течением времени заметно меняют свои физико-химические характеристики, влияющие, в свою очередь, на акустические характеристики подобных материалов. Примерами могут служить цельная кровь человека, полимеризующиеся жидкие клеи, расплавляющиеся при незначительном нагреве твердые замазки и т.д.
Известен способ измерения акустического сопротивления однородных сред в реальном времени методом отражения ультразвуковых колебаний от границ двух идентичных эталонных сред при наклонном падении ультразвука на границы последних и использовании двухканального варианта измерения (т.е. балансной схемы), причем в одном канале эталонная среда граничит с исследуемой плотной однородной средой, а в другом эталонная среда является свободной (граничит с воздухом), обеспечивая непрерывную калибровку (Физическая акустика / Под ред. У.Мэзона. - Т.1. - Ч.А. М.: «Мир», 1966. - С.355). Способ является сложным по исполнению в процедурном и аппаратном отношении.
Известно устройство для осуществления описанного способа, включающее две идентичные эталонные среды в виде призм из плавленого кварца, четыре ультразвуковых преобразователя, расположенных попарно на каждой из призм, и комплекс сложной электронной измерительной аппаратуры (см. там же, а также: Устройство для измерения коэффициента отражения и сдвига фазы акустических сигналов. А.С. 1030720 СССР, МПК G01N 29/00, 1981). Недостатки устройства те же.
Наиболее близким к заявленному способу является «Способ определения акустического сопротивления однородных сред» (А.С. 1714486 СССР, МПК G01N 29/00, 1989). Способ заключается в том, что между исследуемой и эталонной средами создают плоскую границу акустического контакта, возбуждают в эталонной среде в направлении созданной границы акустические колебания и принимают отраженные от указанной границы сигналы, измеряют амплитуду отраженных сигналов, а также амплитуду падающих на эту границу сигналов методом калибровки по амплитуде отраженных от свободной (граничащей с воздухом) границы эталонной среды (в обоих случаях амплитуды превышают заданный уровень), с учетом измеренных значений преобразованных амплитуд определяют искомое акустическое сопротивление однородной среды.
Известно устройство, с помощью которого может быть осуществлен способ - прототип (Методы акустического контроля металлов. / Под ред. Н.П.Алешина. - М.: Машиностроение, 1989. - С.164). Устройство включает ультразвуковой преобразователь и линию задержки в форме осесимметричного стержня, один конец которого акустически связан с ультразвуковым преобразователем, а второй является свободным, предназначенным для контакта с исследуемой средой. Поскольку линия задержки в этом устройстве изготовлена из известного материала, она может быть использована в качестве эталонной среды.
Недостатком этого устройства является невозможность проводить измерения акустического сопротивления исследуемой среды в реальном времени, когда эта характеристика среды непрерывно изменяется.
Указанный недостаток является следствием необходимости при каждом измерении акустического сопротивления среды производить калибровку устройства по контрольной среде: для плотных сред - по воздуху, для газов - по вакууму. Проведение калибровки требует устранения акустического контакта между эталонной и исследуемой средой, т.е. устранения из акустического измерительного канала исследуемой среды и замены ее контрольной средой, например воздушной. Это не позволяет непрерывно отслеживать изменение акустического сопротивления исследуемой среды и, вдобавок, проведение такой калибровки не всегда возможно. В случае, например, полимеризации жидкого клеевого состава устранить на время калибровки исследуемую среду невозможно из-за сильного увеличения адгезии среды к эталонному материалу. Также невозможно оперативно устранять из измерительного канала исследуемый газ и заменять его вакуумом.
Задачей изобретения является обеспечение возможности проводить измерение акустического сопротивления исследуемой однородной среды в реальном времени, когда указанная характеристика среды непрерывно изменяется.
Поставленная задача решается за счет того, что в дополнение к процедурам известного способа создают плоскую границу акустического контакта между исследуемой и второй эталонной средой, имеющей акустическое сопротивление, отличающееся от первой эталонной среды, возбуждают во второй эталонной среде в направлении новой границы акустические колебания и принимают отраженные от этой границы сигналы, находят отношение амплитуд принятых сигналов, отраженных от первой и второй границ эталонных сред с исследуемой средой, которое используют при расчете акустического сопротивления исследуемой среды.
Таким образом, в предлагаемом способе оказывается устраненной процедура повторной или многократной, в том числе непрерывной, калибровки измерительного тракта по контрольной среде, обеспечивается постоянный акустический контакт с исследуемой средой в реальном времени, что позволяет достичь цели изобретения.
Поскольку известное устройство - ультразвуковой преобразователь для измерения акустического сопротивления сред - не позволяет реализовать заявляемый способ, т.к. в нем не предусмотрена возможность проведения требуемой для предлагаемого способа калибровки в реальном времени, необходимо видоизменить известное устройство. Это видоизменение состоит в том, что известное устройство снабжено дополнительными конструктивными элементами: вторым ультразвуковым преобразователем и второй эталонной средой, акустически связанными между собой, причем вторая эталонная среда имеет акустическое сопротивление, отличающееся от первой эталонной среды.
В итоге, новое устройство позволяет избавиться от необходимости при измерении производить многократную или непрерывную калибровку, и как следствие, акустический контакт устройства с исследуемой средой поддерживается постоянно, что обеспечивает достижение цели изобретения.
На прилагаемых чертежах показан пример осуществления предлагаемого способа (Фиг.1) и возможные конфигурации сборных эталонных сред устройства (в их поперечных сечениях), предназначенных для реализации способа (Фиг.2, 3, 4, 5).
Устройство для реализации способа включает первую 1 и вторую 2 эталонные среды, одни торцы которых акустически связаны с ультразвуковыми преобразователями 3 и 4 соответственно, а другие торцы являются свободными, предназначенными для акустического контакта с исследуемой средой (не показана). Эталонные среды 1 и 2 изготовлены из разных материалов, имеющих разные акустические сопротивления Z1 и Z2 соответственно и разные коэффициенты затухания ультразвуковых колебаний α1 и α2 соответственно. Длина первой 1 и второй 2 эталонных сред имеют значения l1 и l2 соответственно и в общем случае не равны друг другу. На соотношение величин 11 и 12 никаких ограничений не накладывается, необходимо только, чтобы принятые соответствующими преобразователями отраженные сигналы были разделены во времени и могли анализироваться порознь.
Ультразвуковой преобразователь 3 возбуждает в эталонной среде 1 акустические колебания с амплитудой , которые распространяются в направлении свободного торца эталонной среды 1 и достигают ее, имея амплитуду . После отражения от наружной границы эталонной среды 1 колебания приобретают амплитуду и, распространяясь в обратном направлении в эталонной среде l, достигают ультразвукового преобразователя 3 и принимаются им, имея амплитуду . Принятые ультразвуковым преобразователем 3 акустические сигналы преобразуются в нем в эквивалентные электрические сигналы и поступают в электронную измерительную аппаратуру, электрически связанную с ультразвуковыми преобразователями 3 и 4 (не показана), где обрабатываются.
Аналогичные процессы имеют место и во второй эталонной среде 2 (см. Фиг.1).
Способ измерения акустического сопротивления однородных сред осуществляют в два этапа: промежуточный и основной. В промежуточном этапе производят акустический контакт свободных торцов эталонных сред 1 и 2 с контрольной средой, в качестве которой используют вакуум (для случая, когда исследуемая среда является газообразной) или воздух (когда исследуемая среда является плотной: жидкой, консистентной, упруговязкой или твердой). В этом этапе амплитуды отраженных колебаний от свободных торцов эталонных сред 1 и 2 равны и соответственно, а амплитуды принятых колебаний равны и соответственно.
Во время последующего, основного этапа осуществления способа свободные концы эталонных сред 1 и 2 вводят в акустический контакт с исследуемой средой (не показана), при этом амплитуды колебаний, соответствующих ранее рассмотренным, принимают значения , , , соответственно.
Из теоретических соображений очевидны следующие математические соотношения амплитуд рассмотренных колебаний:
где R1 и R2 - амплитудные коэффициенты отражения ультразвуковых колебаний от границ контакта исследуемой среды с эталонными средами 1 и 2 соответственно. Для отражения от вакуума (для газов) или воздуха (для плотных сред) коэффициент отражения, как известно, принимается равным (-1).
Из соотношений (1) и (2) легко получить выражение для отношения коэффициентов R1 и R2 отражения акустических колебаний от границ контакта исследуемой среды с эталонными средами 1 и 2 соответственно:
Величину отношения получают из результатов промежуточного этапа осуществления способа и далее в процессе измерений не проверяют, а используют в расчетах как параметр n. При этом выражение (3) упрощается и принимает вид:
Учитывая, что из акустических условий
где Zx - акустическое сопротивление исследуемой среды, выражение (3) перепишется в виде:
Разрешая уравнение (5) относительно Zx, получаем рабочую формулу для нахождения искомого значения акустического сопротивления исследуемой среды:
Знак перед радикалом в конкретных расчетах выбирают из физических соображений.
Таким образом, в предлагаемом способе нет необходимости неоднократно воспроизводить калибровку акустического тракта по контрольной среде, однако обеспечивается возможность контроля величины акустического сопротивления исследуемой среды в реальном времени при постоянстве ее акустического контакта со сборной эталонной средой. Для этого нужно с помощью измерительной аппаратуры непрерывно измерять отношение m амплитуд и сигналов, принятых ультразвуковыми преобразователями после отражения от сред 3 и 4 соответственно, и путем умножения текущего значения m на постоянную n получать К. Причем измерять сами амплитуды и не обязательно, достаточно их только регистрировать, а измерять отношение амплитуд с помощью ручного аттенюатора или любого автоматического измерителя отношений в составе электронной измерительной аппаратуры. Это же касается и измерения отношения n амплитуд и сигналов, принятых вторым 4 и первым 3 ультразвуковыми преобразователями соответственно при проведении промежуточного этапа осуществления способа.
Как следует из выражения (3), величиной n можно в определенной мере управлять, подбирая длины l1 и l2 и материалы эталонных сред 1 и 2 соответственно и варьируя амплитуды возбужденных в эталонных средах колебаний с помощью электронной измерительной аппаратуры. Это, в частности, целесообразно применять для недопущения в опытах значения К=1, при котором рабочая формула для определения Zx теряет смысл.
При конструировании устройства для повышения точности измерений и надежности результатов целесообразно подбирать ультразвуковые преобразователи по возможности близкими по их конфигурации, размерам, акустическим характеристикам. Их форма должна быть адаптирована к форме поперечного сечения эталонной среды. В свою очередь, формы поперечных сечений эталонных сред должны быть подобны друг другу и обеспечивать компактность устройства, как это изображено в примерах на Фиг.2, 3, 4, 5.
Использование: для измерения акустического сопротивления однородных сред. Сущность: между исследуемой и эталонной средами создают плоскую границу акустического контакта, возбуждают в эталонной среде в направлении созданной границы акустические колебания и принимают отраженные от указанной границы сигналы, регистрируют амплитуду принятых сигналов, при этом дополнительно создают плоскую границу акустического контакта между исследуемой и второй эталонной средой, имеющей акустическое сопротивление, отличающееся от первой эталонной среды, возбуждают во второй эталонной среде в направлении дополнительно созданной границы акустические колебания и принимают отраженные от этой границы сигналы, находят отношение амплитуд сигналов, принятых после отражения их от первой и второй границ эталонных сред с исследуемой средой, которое используют при расчете акустического сопротивления исследуемой среды согласно соответствующему математическому выражению. Технический результат: обеспечение возможности проводить измерение акустического сопротивления исследуемой однородной среды в реальном времени, когда указанная характеристика среды непрерывно изменяется. 2 н.п. ф-лы, 5 ил.
1. Способ измерения акустического сопротивления однородных сред, заключающийся в том, что между исследуемой и эталонной средами создают плоскую границу акустического контакта, возбуждают в эталонной среде в направлении созданной границы акустические колебания и принимают отраженные от указанной границы сигналы, регистрируют амплитуду принятых сигналов, с учетом которой определяют акустическое сопротивление исследуемой среды, отличающийся тем, что дополнительно создают плоскую границу акустического контакта между исследуемой и второй эталонной средой, имеющей акустическое сопротивление, отличающееся от первой эталонной среды, возбуждают во второй эталонной среде в направлении дополнительно созданной границы акустические колебания и принимают отраженные от этой границы сигналы, находят отношение амплитуд сигналов, принятых после отражения их от первой и второй границ эталонных сред с исследуемой средой, которое используют при расчете акустического сопротивления исследуемой среды согласно следующему математическому выражению:
где K=m·n; ; ;
A1 прин - амплитуда сигналов, принятых после отражения их от границы между исследуемой и первой эталонной средами;
А2 прин - амплитуда сигналов, принятых после отражения их от границы между исследуемой и второй эталонной средами;
A1,0 прин - амплитуда сигналов, принятых после отражения их от границы между контрольной и первой эталонной средами;
А2,0 прин - амплитуда сигналов, принятых после отражения их от границы между контрольной и второй эталонной средами;
Z1 - акустическое сопротивление первой эталонной среды;
Z2 - акустическое сопротивление второй эталонной среды.
2. Устройство для измерения акустического сопротивления однородных сред, включающее ультразвуковой преобразователь и акустически связанную с ним эталонную среду, отличающееся тем, что оно снабжено вторым ультразвуковым преобразователем, который акустически связан со второй эталонной средой, имеющей акустическое сопротивление, отличающееся от первой эталонной среды.
Способ определения акустического сопротивления материалов с неровной поверхностью | 1987 |
|
SU1460623A1 |
Способ измерения акустического сопротивления сред | 1987 |
|
SU1504602A1 |
Способ определения акустического сопротивления двухкомпонентных композиционных материалов | 1989 |
|
SU1677610A1 |
Способ определения акустического сопротивления одного из компонентов композиционного материала | 1988 |
|
SU1534392A1 |
Устройство для измерения акустического сопротивления материалов | 1988 |
|
SU1589197A1 |
Способ определения акустического сопротивления однородных сред | 1989 |
|
SU1714486A1 |
JP 2007194768 A, 02.08.2007 | |||
JP 2007124187 A, 17.05.2007. |
Авторы
Даты
2009-07-20—Публикация
2007-11-28—Подача