Сферы применения: атомная энергетика в реакторах на быстрых нейтронах, в металлургии и других областях, где требуется перекачка жидкого металла.
Недостатки существующих аналогов:
Принцип действия магнитогидродинамических насосов (далее - МГД-насосов) изложен в /1 и 2/, конструктивные особенности и недостатки приведены в /3/; примеры практического применения - в /4/.
Главный недостаток МГД-насосов постоянного тока заключается в том, что при значительной мощности насоса через короб с жидким металлом на расстоянии продольной оси насоса нужно пропускать токи, достигающие несколько сотен тысяч ампер при напряжении 1-2 вольта. Это создает большие трудности в создании источника питания тока при сложной конструкции подводящих ток шин.
Суть предлагаемого МГД-насоса состоит в том, что он выполнен с числом каналов больше двух, суживающихся от периферии к центру насоса, а система возбуждения выполнена в виде постоянных магнитов, расположенных между каналами и создающих в каналах магнитные потоки, векторы индукции которых направлены по концентрическим окружностям относительно продольной оси.
Принцип действия и принципиальные отличия предлагаемого устройства поясняются фиг.1 и 2. На фиг.1 дан эскиз поперечного разреза, на фиг.2 - продольного.
Насос состоит из корпуса 1 в виде участка трубы с наружным диаметром Dн, участка внутренней трубы с диаметром Dв; длина обоих участков - La. В приведенном примере металл прокачивается через двенадцать каналов 2, сужающихся от наружной трубы к внутренней. Между каналами 2 расположены постоянные магниты 3, создающие магнитный поток Ф в каналах 2. Векторы индукции магнитного потока направлены по концентрическим окружностям относительно продольной оси А-А. Токи I, пропускаемые через металл, подводятся к металлу с помощью шин 4 и направлены вдоль каналов 2.
Благодаря взаимодействию магнитного потока Ф с током I в каналах 2 на металл действует электромагнитная сила - F, пропорциональная произведению Ф·I, перемещающая металл от периферии к центру, в зону трубы с диаметром Dв. Направление перемещения металла в каналах 2 радиально к продольной оси А-А. Благодаря сужению канала 2 от периферии к центру металл наращивает скорость передвижения и кинетическую энергию на выходе из канала 2, этим создается напор во внутренней трубе насоса, обеспечивающий продвижение жидкости вне насоса по гидравлической системе, обслуживающей насосом.
Преимущества предлагаемого МГД- насоса:
а) увеличение числа каналов в данном примере в двенадцать раз по сравнению с аналогами, где используется один канал, позволяет сократить активную длину насоса La в этой кратности;
б) увеличение радиальной высоты канала и уменьшение его ширины позволяет увеличить магнитный поток в каналах при заданной магнитодвижущей силе системы возбуждения;
в) предельное упрощение системы возбуждения насоса с использованием довольно совершенных сейчас постоянных магнитов с высокой намагничивающей силой, что в сочетании с преимуществом по п.б) обеспечит повышенную производительность насоса;
г) резкое упрощение системы подвода тока к каналам с металлом за счет последовательного включения участков каналов к внешнему источнику тока. Ток по каналам 2 в приведенном примере уменьшается в 12 раз. За счет этого резко упрощается проблема питания насоса. Вместо питающего напряжения 1-2 В нужен источник на 12-24 В при малых токах. В качестве источника можно использовать понижающий трансформатор и полупроводниковый выпрямитель.
Перечисленные преимущества МГД-насоса позволят при заданной производительности значительно упростить конструкцию насоса и системы его питания, уменьшить его размеры и снизить стоимость, повысить КПД и сократить затраты на изготовление и обслуживание.
Использованная литература
1. Вольдек А.И. «Электрические машины», 1974 г.
2. Патент DE 3443614A "Service National" FR 13.06.1985.
3. Бирзвал К.А. «Основы теории кондукционных магнитодинамических насосов постоянного тока», 1968 г.
4. У.Джексон, Э.Гарсон. Сборник «Инженерные вопросы магнитной гидродинамики». Под ред. Е.П.Велихова.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРИЧЕСКАЯ МАШИНА РАДИАЛЬНОГО ДВИЖЕНИЯ | 2007 |
|
RU2346378C1 |
МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР | 2010 |
|
RU2409886C1 |
МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР | 2011 |
|
RU2456735C1 |
МАГНИТОГИДРОДИНАМИЧЕСКОЕ УСТРОЙСТВО (ВАРИАНТЫ) | 2012 |
|
RU2529006C2 |
Магнитогидродинамический насос | 2018 |
|
RU2700575C1 |
Кондукционный МГД-насос и насосная система | 2018 |
|
RU2701154C1 |
Морская волновая электростанция (варианты), магнитогидродинамический генератор, магнитогидродинамический канал, водородно-кислородный турбогенератор, насосная установка и применение электрохимического генератора | 2017 |
|
RU2677318C2 |
ТЕПЛОВОЗ | 2010 |
|
RU2417910C1 |
СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ | 2016 |
|
RU2626377C1 |
Сердечник цилиндрического линейного индукционного насоса и цилиндрический линейный индукционный насос | 2020 |
|
RU2765977C2 |
Изобретение относится к электротехнике и может быть использовано в установках атомной энергетики, металлургии и других областях техники. Магнитогидродинамический насос (МГД-насос) состоит из корпуса в виде двух участков труб - внутренней и наружной, охватывающего двенадцать каналов, сужающихся от наружной трубы к внутренней. Через каналы проходит жидкий металл и пропускается ток. Между каналами расположены постоянные магниты, создающие в каналах магнитный поток. В результате взаимодействия протекающего через каналы тока с потоком в каналах на жидкий металл действует электромагнитная сила, перемещающая жидкий металл в радиальном направлении. Технический результат заключается в упрощении системы подвода тока, что позволяет упростить конструкцию насоса и снизить его стоимость за счет последовательного подключения участков каналов к внешнему источнику тока. 2 ил.
Магнитогидродинамический насос, создающий электромагнитные силы для продвижения жидкого металла от взаимодействия магнитного потока, вызванного системой возбуждения, с током, пропускаемым через канал с металлом, в насосе от внешнего источника напряжения, отличающийся тем, что он выполнен с числом каналов больше двух, суживающих от периферии к центру насоса, а система возбуждения выполнена в виде постоянных магнитов, расположенных между каналами и создающими в каналах магнитные потоки, векторы индукции которых направлены по концентрическим окружностям относительно продольной оси.
DE 3443614 А, 13.06.1985 | |||
СПОСОБЫ, ИСПОЛЬЗУЮЩИЕ ВЫСОКОЭНЕРГЕТИЧЕСКИЕ ПОСТОЯННЫЕ МАГНИТЫ ДЛЯ ЭЛЕКТРОМАГНИТНОГО НАГНЕТАНИЯ, ТОРМОЖЕНИЯ И ДОЗИРОВАНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ, ПОДАВАЕМЫХ В ЛИТЕЙНЫЕ МАШИНЫ | 2002 |
|
RU2291028C2 |
МАГНИТОГИДРОДИНАМИЧЕСКИЙ НАСОС | 1995 |
|
RU2106053C1 |
ЭЛЕКТРОМАГНИТНЫЙ КОНДУКЦИОННЫЙ НАСОС | 0 |
|
SU270503A1 |
Электромагнитный насос постоянного тока | 1978 |
|
SU765947A1 |
US 5009399 А, 23.04.1991 | |||
US 5975855 А, 02.11.1999 | |||
US 4906877 А, 06.03.1990. |
Авторы
Даты
2009-07-27—Публикация
2007-10-03—Подача