Изобретение относится к области двигателестроения, в частности к системам подачи топлива в газотурбинные двигатели (ГТД). Наиболее целесообразно его использование для топливных систем летательных аппаратов, у которых двигатели расположены выше основных топливных баков, например у вертолетов.
Известна система подачи топлива в газотурбинный двигатель вертолета Ми-8 (см. "Вертолет Ми-8. Техническое описание. Кн.1: Летно-технические характеристики.", М., «Машиностроение», 1970), содержащая подвесные баки с электроприводными перекачивающим насосами, расходный бак с подкачивающими электроприводными насосами, блок фильтров, насос-регулятор с приводом от ГТД.
Недостатками указанной системы являются:
- При отказе подкачивающих насосов и высоте полета более 1000 м возможна остановка двигателя. Это связано с уменьшением давления топлива на входе в насос высокого давления (см. Кеба И.В. "Летная эксплуатация вертолетных газотурбинных двигателей", М., «Транспорт», 1976 г., стр.116).
- При повреждении (с потерей герметичности) трубопроводов и расходного бака топливо заливает внутреннее пространство фюзеляжа и грузовую кабину, что чрезвычайно опасно в пожарном отношении (см. Володко А.М., Горшков В.А. "Вертолет в Афганистане", М., «Воениздат», 1993 г., стр.88).
Также известна система нагнетания топлива в двигатель (см. патент США №5490387, кл. F02C 7/22, 1996 г.), которая содержит трубопровод подвода топлива из топливного бака к двигателю, топливный бустерный (подкачивающий) насос, основной топливный насос и топливный аккумулятор, расположенный между подкачивающим насосом и основным топливным насосом, обеспечивающий резервную подачу топлива в двигатель, обратный канал, связанный с аккумулятором и с трубопроводом подачи топлива к подкачивающему насосу для подачи нерастворенных паров топлива из аккумулятора. Бустерный насос выполнен в виде центробежного насоса с боковыми каналами, имеющего удовлетворительную способность к самовсасыванию и относительно постоянное давление на выходе.
Недостатками указанной системы являются:
- Усложнение конструкции и увеличение веса при применении центробежного насоса с боковыми каналами.
- Худшие кавитационные характеристики центробежного насоса с боковыми каналами по сравнению с обычным центробежным насосом.
- Наличие топливного аккумулятора, утяжеляющего и усложняющего систему.
- Топливный аккумулятор, при потере герметичности, более пожароопасен по сравнению с расходным баком из-за наличия внутреннего давления.
Техническим результатом, на достижение которого направлено изобретение, является повышение надежности работы системы топливопитания и снижение веса системы в целом.
Для достижения указанного технического результата в системе топливопитания газотурбинного двигателя, содержащей последовательно установленные подкачивающий насос и основной насос-регулятор, подкачивающий насос выполнен в виде центробежной и коловратной ступеней, установленных последовательно, коловратная ступень дополнительно снабжена клапаном перепуска с сервопоршнем, причем вход клапана перепуска через фильтр соединен с выходной магистралью коловратной ступени, выход - с входом в коловратную ступень, поршневая полость сервопоршня связана каналом с входной магистралью центробежной ступени, а штоковая полость клапана - с выходной магистралью центробежной ступени.
Отличительные признаки, а именно то, что подкачивающий насос имеет центробежную и коловратную ступени, установленные последовательно, а коловратная ступень снабжена клапаном перепуска с сервопоршнем, причем вход клапана перепуска через фильтр соединен с выходной магистралью коловратной ступени, а выход - с входом в коловратную ступень, поршневая полость сервопоршня связана каналом с входной магистралью центробежной ступени, а штоковая полость клапана - с выходной магистралью центробежной ступени, позволяют управлять клапаном перепуска топлива по величине перепада на центробежном насосе, что повышает надежность и снижает вес. Это достигается тем, что:
- Центробежная ступень отличается малой чувствительностью к загрязнению топлива и кавитации, простотой конструкции, малой удельной массой.
- Коловратная ступень отличается хорошей всасывающей способностью, а также простотой конструкции по сравнению с другими типами объемных насосов.
- Установка коловратной ступени за центробежной позволяет обеспечить заполнение системы топливом на запуске.
- Также коловратная ступень обеспечивает надежную работу центробежной при выделении воздуха, растворенного в топливе.
- Обеспечивается прекращение подачи топлива при нарушении герметичности магистрали подвода топлива.
- Единый привод центробежной и коловратной ступеней позволяет снизить массу системы в целом.
- Совместная работа центробежной и коловратной ступеней позволяет обеспечить их надежную работу при большей частоте вращения привода, тем самым уменьшить их массу и габариты.
- Совместная работа центробежной и коловратной ступеней позволяет использовать коловратную ступень меньшей производительности, что позволяет снизить массу системы в целом.
- Установка клапана перепуска топлива, управляемого по величине перепада на центробежной ступени, позволяет обеспечить надежную работу и увеличение ресурса коловратной ступени за счет очистки топлива фильтром.
- Установка клапана перепуска топлива, управляемого по величине перепада на центробежной ступени, позволяет уменьшить мощность, потребляемую коловратной ступенью.
Предложенная система представлена на чертеже и описана ниже.
Система содержит подкачивающий насос 1 и основной насос-регулятор 2. Подкачивающий насос 1 состоит из установленных последовательно центробежной ступени 3 и коловратной ступени 4, связанных приводным валом 5 с газотурбинным двигателем (не показан), и клапана перепуска 6. Входная магистраль 7 клапана перепуска 6 через самоочищающийся фильтр 8 соединена с выходной магистралью 9 ступени 4. Выходная магистраль 10 клапана перепуска 6 соединена с входной магистралью 11 ступени 4. Клапан перепускав имеет сервопоршень 12, причем поршневая полость 13 клапана 6 связана каналом 14 подвода давления с входной магистралью 15 центробежной ступени 3, а полость 16 штока клапана 6 связана каналом 17 с выходной магистралью 18 ступени 3. В поршневой полости 13 установлена пружина 19. Магистраль 15 связана с топливным баком 20. Обратный клапан 21 установлен между магистралями 18 и 22. Обратный клапан 23 установлен между магистралями 24 и 25.
Топливная система может также иметь основной фильтр 26 и воздухоотделитель 27. Трубопровод 28 соединяет воздухоотделитель 27 с баком 20.
Штоковая полость 16 может быть соединена с поршневой полостью 13 жиклером, который служит для удаления воздуха при заполнении системы топливом.
Клапаны 21 и 23 могут быть заменены проточками, выполненными на штоке клапана 6.
Система работает следующим образом.
При отсутствии давления в системе клапан 6 под действием усилия пружины 19 закрыт, магистрали 7 и 10 разъединены.
В начале запуска или холодной прокрутки двигателя коловратная ступень 4 откачивает воздух и обеспечивает заполнение топливом:
- магистралей 7, 9, 10, 11, 14, 15, 17, 18, 22, 24 и 25;
- внутренних полостей клапанов 6, 21 и 23,
- внутренних полостей центробежной ступени 3;
- внутренних полостей фильтров 8 и 26.
Воздух вытесняется топливом в воздухоотделитель 27 и по магистрали 28 сбрасывается в топливный бак 20.
Во время запуска двигателя частота вращения приводного вала 5 низкая (около 10% от максимальной). Так как напор, создаваемый центробежной ступенью 3, примерно пропорционален квадрату частоты вращения приводного вала 5, то суммарное усилие от давления топлива, подводимого на вход в клапан 6, и от давления топлива, подводимого к штоковой полости 16, меньше суммарного усилия от давления топлива, подводимого к поршневой полости 13, и усилия пружины 19. При этом клапан 6 закрыт, магистрали 7 и 10 разъединены. Коловратная ступень 4 обеспечивает подачу необходимого количества топлива по магистралям 9, 24, 25 через клапан 23 и фильтры 8, 26 в насос-регулятор 2 и обеспечивает его бескавитационную работу. Клапан 21 препятствует перетеканию топлива через крыльчатку центробежного насоса 3.
После запуска двигателя и увеличении частоты вращения приводного вала 5 возрастает напор, создаваемый центробежной ступенью 3. Когда суммарное усилие от давления топлива, подводимого на вход в клапан 6, и от давления топлива, подводимого в штоковую полость 16, становится больше суммарного усилия от давления топлива, подводимого к поршневой полости 13, и усилия пружины 19, клапан 6 открывается и соединяет магистрали 7 и 10. При этом клапан 21, настроенный на меньшее давление открытия, чем клапан 23, открывается, а клапан 23 закрывается. Центробежная ступень 3 обеспечивает подачу необходимого количества топлива по магистралям 18, 22 через клапан 21 и фильтр 26 в насос-регулятор 2 и обеспечивает его бескавитационную работу. Топливо, проходящее через коловратную ступень 4, при открытом клапане 6 циркулирует по магистралям 9, 7, 10, 11 и очищается, проходя через фильтр 8.
Фильтр 7 выполнен самоочищающимся. При закрытом клапане 6, когда топливо проходит по магистралям 9, 24, 25, происходит очистка фильтра 8. Частицы грязи, смытые с фильтра 8, задерживаются фильтром 26. При открытом клапане 6, когда топливо проходит по магистралям 9, 7, 10, 11, фильтр 8 очищает топливо, циркулирующее в замкнутом контуре. Тем самым повышается ресурс работы коловратной ступени 3.
При увеличении высоты полета летательного аппарата снижается абсолютное давление в топливных баках. В этом случае происходит выделение воздуха, растворенного в топливе (интенсивность этого процесса зависит от конкретных условий полета). Попадание газового пузыря в центробежную ступень 3 приводит к падению напора и снижению давления в выходной магистрали 18. Суммарное усилие от давления топлива, подводимого на вход в клапан 6, и от давления топлива, подводимого в штоковую полость 16, становится меньше суммарного усилия от давления топлива, подводимого в поршневую полость 13, и усилия пружины 19. При этом клапан 6 закрывается, разъединяя магистрали 7 и 10. Коловратная ступень 4 отсасывает газовый пузырь из центробежной ступени 4 и тем самым препятствует длительному снижению давления топлива на входе в насос-регулятор 2. При восстановлении давления топлива в выходной магистрали 18 суммарное усилие от давления топлива, подводимого на вход в клапан 6, и от давления топлива, подводимого в штоковую полость 16, становится больше суммарного усилия от давления топлива, подводимого в поршневую полость 13, и усилия пружины 19. При этом клапан 6 открывается, соединяя магистрали 7 и 10. Топливо, проходящее через коловратную ступень 4 при открытом клапане 6, циркулирует по магистралям 9, 7, 10, 11.
Клапан 6 также ограничивает величину предельного перепада давлений между входом и выходом коловратной ступени 4.
Так как избыточное давление в магистрали 15 отсутствует, при повреждении (с потерей герметичности) утечки топлива из нее минимальны. Подкачивающий насос 1 отсасывает из поврежденной магистрали 15 остатки топлива, после чего происходит останов ГТД.
название | год | авторы | номер документа |
---|---|---|---|
Двухканальная система топливопитания и регулирования газотурбинного двигателя | 2019 |
|
RU2700989C1 |
ДВУХКАНАЛЬНАЯ СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2012 |
|
RU2504677C1 |
СИСТЕМА ТОПЛИВОПИТАНИЯ И МЕХАНИЗАЦИИ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2023 |
|
RU2821280C1 |
СИСТЕМА ТОПЛИВОПОДАЧИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2008 |
|
RU2368794C1 |
ДВУХКАНАЛЬНАЯ СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2014 |
|
RU2553915C1 |
ДВУХКАНАЛЬНАЯ СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2007 |
|
RU2344305C1 |
ДВУХКАНАЛЬНАЯ СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2007 |
|
RU2338911C1 |
Двухканальная система топливопитания и регулирования газотурбинного двигателя (ГТД) | 2018 |
|
RU2680475C1 |
СПОСОБ ТОПЛИВОПИТАНИЯ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2034166C1 |
СИСТЕМА ТОПЛИВОПИТАНИЯ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2012 |
|
RU2490493C1 |
Система топливопитания газотурбинного двигателя предназначена для топливных систем летательных аппаратов, у которых двигатели расположены выше основных топливных баков. Система содержит основной насос-регулятор с последовательно установленными подкачивающими центробежной и коловратной ступенями. На коловратной ступени установлен клапан перепуска с сервопоршнем. Вход клапана через фильтр соединен с выходом коловратной ступени, а выход - с ее входом. Поршневая полость сервопоршня связана с входом центробежной ступени, а штоковая полость клапана - с ее выходом. Клапан управляется по величине перепада на центробежной ступени, что позволяет повысить надежность работы системы при выделении воздуха, растворенного в топливе, или повреждении входного трубопровода, а также уменьшить массу системы и потребляемую ею мощность. 1 ил.
Система топливопитания газотурбинного двигателя, содержащая последовательно установленные подкачивающий насос и основной насос-регулятор, отличающаяся тем, что подкачивающий насос имеет центробежную и коловратную ступени, установленные последовательно, коловратная ступень снабжена клапаном перепуска с сервопоршнем, причем вход клапана перепуска через фильтр соединен с выходной магистралью коловратной ступени, а выход - с входом в коловратную ступень, поршневая полость сервопоршня связана каналом с входной магистралью центробежной ступени, а штоковая полость клапана - каналом с выходной магистралью центробежной ступени.
US 5490387 A, 13.02.1996 | |||
СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2002 |
|
RU2228455C2 |
СИСТЕМА РЕГУЛИРОВАНИЯ ПОДАЧИ ТОПЛИВА ПРИ ПУСКЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1997 |
|
RU2133359C1 |
СИСТЕМА ТОПЛИВОПОДАЧИ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2001 |
|
RU2194181C1 |
СИСТЕМА ТОПЛИВОПОДАЧИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА | 2002 |
|
RU2211347C1 |
FR 2581129 A1, 31.10.1986. |
Авторы
Даты
2009-08-20—Публикация
2008-01-21—Подача