Устройства для распыливания жидкостей (форсунки и распылители) широко применяют в отраслях современной техники, в том числе в наземных газотурбинных установках (ГТУ) и реактивных двигателях (РД).
Камеры сгорания ГТУ и РД работают в широком диапазоне изменения расхода топлива. Так, например, у воздушно-реактивного двигателя при переходе с режима максимальной тяги у земли на режим сильного дросселирования на большой высоте расход топлива уменьшается от 20 до 30 раз. В простой центробежной форсунке расход топлива приблизительно равен корню квадратному из перепада давления на форсунке, так что для увеличения расхода топлива в 30 раз требуется увеличить перепад давления в 900 раз. Применяемые в настоящее время топливные насосы обеспечивают максимальное давление перед форсунками, примерно равное (7,5-8)×106 Па. Это давление не может быть существенно повышено без усложнения и утяжеления топливной аппаратуры и уменьшения ее надежности. Если максимальное давление подачи составляет (7,5-8)106 Па, то для уменьшения расхода в 30 раз необходимо снизить давление до (8-9)103 Па. Но при столь низком давлении топливная струя, вытекающая из форсунки, уже практически не распадается на капли, образуя пузырь. Очевидно, что простые струйные и центробежные форсунки в интервале давления от (0,3-0,4) до (7,5-8,0)×106 Па не могут обеспечить требуемого диапазона изменения расхода топлива.
Следовательно, возникает потребность в создании форсунок, у которых расход с увеличением давления подачи возрастает быстрее, чем у известных. То есть требуемый диапазон изменения расхода топлива должен достигаться в сравнительно узком интервале давлений подачи при заданном качестве распыла.
Известны способ и устройство для подготовки смеси воздуха с топливом и ее сжигания в камере сгорания теплоэнергоустановки (Патент РФ №2116574 С1, 6 F23R 3/28, 16.02.1993). Устройство содержит воздушный канал, размещенный снаружи него кольцевой топливный коллектор, размещенный в воздушном канале смесительный узел, который включает блок для струйной подачи топлива в поперечном сечении канала, участок канала за блоком для перемешивания топлива с воздухом, имеющий на выходе турбулизирующий элемент, гидравлически сопряженный с блоком центральный канал подачи топлива, снабженный за турбулизирующим элементом на выходе радиальными струйными форсунками. Способ базируется на снижении пульсаций концентрации топлива в сжигаемой смеси путем ее ступенчатой подготовки.
Устройство и предлагаемый способ позволяют подготовить хорошо перемешанную топливовоздушную смесь. Недостатком заявленного устройства является возможность проскока пламени внутрь смесителя.
Известна горелка (Патент РФ №2099639 С1, 6 F23R 3/28, 21/06/1996), содержащая топливораздающее устройство, аксиальный завихритель воздуха с лопатками и втулкой, а также примыкающую к завихрителю кольцевую предкамеру, образованную упомянутой втулкой и цилиндрической обечайкой, расположенной коаксиально с ней и охватывающей лопатки завихрителя, а также сужающее устройство, установленное на выходе цилиндрической обечайки. Сужающее устройство выполнено в виде конического пережима, втулка завихрителя проходит сквозь него, выходя за пределы кольцевой предкамеры, а длина последней является функцией высоты лопатки и угла закрутки потока завихрителя. Лопаточный завихритель установлен между топливораздающим устройством и выходом кольцевой предкамеры. Выступающий за пределы предкамеры конец втулки завихрителя выполнен с перфорированной торцевой стенкой, а внутри втулки имеется примыкающая к этой стенке полость, сообщенная с каналом, у которого входное отверстие расположено перед завихрителем воздуха. Горелка позволяет хорошо перемешивать топливо с воздухом. Недостатками предложенной горелки является оседание капель топлива на лопатках и его последующее коксование на режимах запуска и остановки двигателя.
Известна регулируемая центробежная форсунка с перепуском топлива (Дитякин Ю.Ф., Клячко Л.А., Новиков Б.В., Ягодкин В.И. «Распыливание жидкостей», М., Машиностроение, 1977, стр.96-101, рис.48, 49), которая содержит цилиндрическую камеру закручивания с тангенциальными каналами топлива в нее, центральным соплом на одной торцевой стенке и центральным каналом перепуска топлива на другой торцевой стенке. Канал перепуска топлива снабжен подпружиненным клапаном. Перепускной клапан устроен таким образом, что его проходное сечение начинает уменьшаться с возрастанием давления подачи топлива до некоторой величины, при котором сечение равно нулю (клапан закрыт). На режимах, при которых клапан открыт, только часть топлива, поступающего в форсунку, впрыскивается через сопло в окружающую среду. Остальная часть по каналу перепуска подается во всасывающую линию насоса. Чем больше перепускается топлива (при данном давлении перед форсункой), тем меньше его расход через сопло и тем больше корневой угол факела. При небольших давлениях подачи, пока проходное сечение клапана неизменно, коэффициент расхода сопла имеет малое постоянное значение. С ростом давления подачи топлива проходное сечение клапана и количество перепускаемого топлива уменьшаются. При этом коэффициент рахода возрастает и достигает максимального значения при закрытом клапане перепуска. Чем больше расход перепускаемого топлива, тем больше момент количества движения на входе в камеру закручивания и, следовательно, тем меньше коэффициент расхода сопла. Центробежная форсунка с перепуском обладает достаточно большим диапазоном расходов. Так, в интервале давлений подачи топлива (0,3-5)106 Па расход через сопло меняется от 1,1 до 95 г/с, т.е. изменяется в 86,5 раза. Для нерегулируемых форсунок в указанном интервале давлений расход возрастает всего в 4,1 раза. Недостатком такой форсунки является то, что нагретое в ней топливо частично перепускается обратно в топливный бак. Это увеличивает непроизводительные потери топливоподающей системы и усложняет ее конструкцию.
Наиболее близким аналогом того же назначения, что и заявляемое техническое решение, является горелка (Патент РФ №2013693 С1, МПК5 F23D 7/00, 06.05.1991). Горелка содержит полый корпус воздушного канала с участком сужения. Корпус снабжен лопаточным завихрителем на входе и установленным по его оси до минимального поперечного сечения распылителем топлива. Распылитель топлива включает канал подачи топлива на вход в центробежную форсунку, которая имеет вихревую камеру с завихрителями на входе и соплом на выходе. Предложенная горелка позволяет интенсифицировать процесс смесеобразования топлива с воздухом и снизить содержание окислов азота в продуктах сгорания. Однако для нового поколения РД и ГТУ горелка с простой центробежной форсункой не обеспечивает требуемого диапазона изменения расхода топлива при пониженном давлении подачи.
Кроме того, одной из важнейших задач при разработке камер сгорания и форсунок или горелок для них является снижение уровня дымления и эмиссии загрязняющих веществ в продуктах сгорания топлива. Основное внимание уделяется снижению дымления (сажи) и снижению в продуктах сгорания несгоревших углеводородов (СnНm), моноокиси углерода (СО) и оксида азота (NOx). Эмиссия этих веществ характерна для любой тепловой машины, работающей на природном топливе.
В основу изобретения положено решение следующих задач:
- разработка форсунок с мелкодисперсным распылом топлива и пониженным давлением его подачи в камеру сгорания при расширенном диапазоне изменения расхода;
- снижение уровня дымления и эмиссии вредных веществ (СnНm, СО, NOx) в продуктах сгорания;
- получение высокой эффктивности и устойчивости горения в камере сгорания РД и ГТУ.
Поставленные задачи решаются тем, что предлагаемая центробежно-пневматическая форсунка содержит полый корпус воздушного канала с участком сужения. Корпус снабжен лопаточным завихрителем на входе и установленным по его оси до минимального поперечного сечения распылителем топлива. Распылитель топлива включает канал подачи топлива на вход в центробежную форсунку, которая имеет вихревую камеру с завихрителями на входе и соплом на выходе.
Согласно изобретению лопатки завихрителя воздуха выполнены полыми, а их выходные кромки по радиусу канала имеют сквозные отверстия. Завихрители топлива на входе в вихревую камеру выполнены в виде шнека со сквозными винтовыми канавками на его наружной поверхности. Причем вихревая камера через равномерно расположенные по окружности сквозные наклонные к оси отверстия перепуска топлива в шнеке и магистраль, в которой установлен перепускной клапан с корпусом, соединена с полостями лопаток завихрителя воздуха. Кроме того, стенка вихревой камеры со стороны сопла выполнена типа конусной или сферической и снабжена равномерно расположенными по окружности наклонными к оси сквозными отверстиями.
При такой конструкции центробежно-пневматической форсунки:
- обеспечивается мелкодисперсный распыл топлива в одном или двух поясах при пониженном давлении его подачи в камеру сгорания и расширенное изменение расхода топлива, что увеличивает поверхности контакта топлива и воздуха в смеси и обеспечивает получение высокой эффективности горения и рост полноты сгорания топлива;
- ускоряется выгорание закрученной в воздушном канале топливовоздушной смеси, что сокращает время ее пребывания в зоне горения и снижает уровень дымления и эмиссии в продукты сгорания вредных веществ;
- обеспечивается получение высокой эффективности и устойчивости горения в камере сгорания топливовоздушной смеси;
- исключается возможность проскока пламени из камеры сгорания внутрь воздушного канала;
- исключается возможность оседания топлива на элементах конструкции форсунки на режимах запуска и останова двигателя;
- исключается непроизводительный перепуск части топлива обратно в бак.
Следует отметить, что выполнение стенки вихревой камеры со стороны сопла типа конусной или сферической не является определяющим для работы форсунки и зависит только от технологических возможностей изготовителя.
Центробежно-пневматические форсунки такого типа могут устанавливаться в трубчатой, трубчато-кольцевой или кольцевой камерах сгорания РД и ГТУ.
Существенные признаки изобретения могут иметь развитие и уточнение:
- перепускной клапан может содержать полый плунжер со сквозными отверстиями в боковой стенке, установленный внутри корпуса клапана, и быть поджат пружиной до упора во внутреннюю торцевую кромку корпуса. Эта конструкция обеспечивает длительную надежную работу клапана в условиях многократного срабатывания и вибрации;
- корпус распылителя в зоне лопаток завихрителя воздуха внутри может быть снабжен кольцевым топливным коллектором, сопряженным гидравлически с внутренними полостями лопаток и через боковые отверстия в стенке плунжера с его внутренней полостью. Это, при открытом клапане, обеспечивает сообщение полостей вихревой камеры с полостями лопаток завихрителя воздуха. Таким образом, выполняется дополнительная подача топлива с задних кромок лопаток завихрителя на входе в воздушный канал, что обеспечивает его мелкодисперсный распыл;
- регулируемое поджатие клапана в корпусе пружиной с заданным усилием обеспечивает его открытие давлением топливовоздушной смеси в вихревой камере при заданном давлении;
- расположение входов в отверстия перепуска топлива в шнеке на середине вихревой камеры обеспечивает минимальные потери на перепуск топлива из вихревой камеры в полости лопаток завихрителя воздуха.
Настоящее изобретение поясняется последующим подробным описанием центробежно-пневматической форсунки и ее работы со ссылкой на иллюстрации, представленные на фиг.1-4, где:
На фиг.1 изображен продольный разрез центробежно-пневматической форсунки;
На фиг.2 - элемент А фиг.1;
На фиг.3 - сечение Б-Б фиг.2;
На фиг.4 - элемент В фиг.1.
Центробежно-пневматическая форсунка (см. фиг.1) содержит полый корпус 1 воздушного канала 2 с участком сужения 3. Корпус снабжен лопаточным завихрителем воздуха 4 на входе и установленным по его оси до минимального поперечного сечения 5 распылителем топлива 6. Распылитель топлива 6 внутри снабжен центробежной форсункой и содержит канал 7 подачи топлива на вход в форсунку. Форсунка имеет вихревую камеру 8 с завихрителями на входе и соплом 9 на выходе.
Лопатки 10 (см. фиг.3) завихрителя воздуха 4 выполнены полыми, а их выходные кромки 11 по радиусу канала 2 имеют сквозные отверстия 12. Завихрители топлива на входе в вихревую камеру 8 выполнены в виде шнека 13 со сквозными винтовыми канавками 14 на его наружной поверхности.
Вихревая камера 8 через равномерно расположенные по окружности сквозные, наклонные к оси отверстия 15 перепуска топлива в шнеке 13 и магистраль 16, в которой установлен перепускной клапан 17 с корпусом 18, соединена с полостями 19 лопаток 10 завихрителя воздуха 4. Стенка 20 вихревой камеры 8 со стороны сопла 9 (см. фиг.1, 4) выполнена типа конусной или сферической и снабжена расположенными равномерно по окружности наклонными к оси сквозными отверстиями 21.
Перепускной клапан 17 (см. фиг.1, 2) содержит полый плунжер 22 со сквозными отверстиями 23 в боковой стенке 24, установленный внутри корпуса 18, который поджат пружиной 25 до упора в торцевую кромку 26 корпуса 18.
Корпус распылителя 6 в зоне лопаток 10 (см. фиг.1, 2) завихрителя воздуха 4 внутри снабжен кольцевым топливным коллектором 27, сопряженным гидравлически с внутренними полостями 19 лопаток 10 и через отверстия 23 с полостью 28 плунжера 22. Пружина 25 в корпусе 18 поджата резьбовой пробкой 29. Входы 30 в отверстия 15 перепуска топлива в шнеке 13 расположены на середине вихревой камеры 8 под винтовыми канавками 14 шнека 13.
Центробежно-пневматическая форсунка работает следующим образом. В нерабочем положении перепускной клапан 17 закрыт усилием пружины 25. На режиме запуска камеры сгорания воздух поступает в канал 2 и на входе закручивается радиальными лопатками 10 завихрителя топлива 4, а затем, пройдя участок сужения 3, выходит в камеру сгорания (не показано). При последующей подаче топлива с низким давлением в канал 7 оно поступает в полость распылителя 6, проходит сквозные винтовые каналы 14 шнека 13 и заполняет вихревую камеру 8. Из вихревой камеры 8 закрученное топливо через сопло 9 в виде конусной пелены поступает далее в камеру сгорания. Одновременно из вихревой камеры 8 часть топлива через отверстия 21 поступает в участок сужения 3 канала 2, соударяется со стенкой сужения 3, растекается в виде пелены, смешивается с воздухом и также уносится в камеру сгорания. При этом перепускной клапан 17 остается закрытым. Совместная работа центробежной и струйных форсунок позволяет увеличить угол раскрытия конусной пелены топлива, уменьшить толщину пелены и размеры капель в центре факела, а также увеличить его дальнобойность, что облегчает воспламенение топливовоздушной смеси от штатного запального устройства (не показано).
На режиме малого газа повышается давление подачи топлива в канале 7 и далее в вихревой камере 8 до уровня, при котором открывается перепускной клапан 17. Кроме расхода через сопло 9 и отверстия 21 (см. фиг.1) топливо из вихревой камеры 8 дополнительно (см. фиг.2) через отверстия 15, магистраль 16, отверстия 23 перепускного клапана 17 и коллектор 27 поступает во внутренние полости 19 лопаток 10 завихрителя воздуха 4. Из полостей 19 (см. фиг.3) через отверстия 12 топливо радиально вдоль лопаток 10 распыливается в воздушный поток канала 2. Дальнейшее повышение давления топлива увеличивает его расход через все расходные отверстия форсунки (в основном через отверстия 12 и 21) и увеличивает число оборотов двигателя. Увеличение числа оборотов двигателя повышает перепад давления воздуха в канале 2 форсунки и качество распыливания топлива (мелкодисперсность и однородность смеси), что снижает уровень эмиссии загрязняющих веществ в продуктах сгорания на взлетном и крейсерском режимах. При остановке двигателя путем выключения подачи топлива в канал 7 клапан перепуска топлива 17 закрывается, а остатки топлива потоком воздуха в канале 2 выдуваются в камеру сгорания.
Предложенная конструкция центробежно-пневматической форсунки для РД и ГТУ позволяет снизить уровень дымления и эмиссию вредных веществ в продуктах сгорания топлива, расширить диапазон изменения расхода топлива при заданном уровне давлений подачи, получить высокую эффективность и устойчивость горения в камере сгорания, исключить возможность проскока пламени из камеры сгорания внутрь воздушного канала, исключить возможность оседания капель топлива на элементах конструкции форсунки и исключить непроизводительный перепуск топлива из форсунки обратно в бак.
название | год | авторы | номер документа |
---|---|---|---|
ЦЕНТРОБЕЖНО-ПНЕВМАТИЧЕСКАЯ ФОРСУНКА | 2022 |
|
RU2781796C1 |
СПОСОБ РАСПЫЛИВАНИЯ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА И ФОРСУНКА ДЛЯ РАСПЫЛИВАНИЯ | 2007 |
|
RU2348823C2 |
ФОРСУНОЧНЫЙ МОДУЛЬ КАМЕРЫ СГОРАНИЯ ГТД | 2010 |
|
RU2439430C1 |
Способ работы форсажного комплекса турбореактивного двигателя (ТРД) и форсажный комплекс, работающий этим способом, способ работы насоса форсажного и насос форсажный, работающий этим способом, способ работы ТРД и ТРД, работающий этим способом | 2017 |
|
RU2656525C1 |
УСТРОЙСТВО ДЛЯ ПОДГОТОВКИ И ПОДАЧИ ТОПЛИВОВОЗДУШНОЙ СМЕСИ В КАМЕРУ СГОРАНИЯ | 2008 |
|
RU2386082C1 |
КОЛЬЦЕВАЯ КАМЕРА СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2007 |
|
RU2349840C1 |
ТОПЛИВОВОЗДУШНЫЙ МОДУЛЬ ФРОНТОВОГО УСТРОЙСТВА КАМЕРЫ СГОРАНИЯ ГТД | 2010 |
|
RU2439435C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2013 |
|
RU2525385C1 |
ФРОНТОВОЕ УСТРОЙСТВО КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2009 |
|
RU2395039C1 |
СПОСОБ ДВУХСТУПЕНЧАТОГО СМЕШЕНИЯ ЖИДКОСТИ И ГАЗА С ПОВЫШЕННОЙ ОДНОРОДНОСТЬЮ СМЕСИ | 2004 |
|
RU2252065C1 |
Центробежно-пневматическая форсунка предназначена для работы в камерах сгорания наземных газотурбинных установок и реактивных двигателей. Центробежно-пневматическая форсунка содержит полый корпус воздушного канала с участком сужения, снабженный лопаточным завихрителем воздуха на входе, установленный по оси корпуса до его минимального поперечного сечения распылитель топлива с центробежной форсункой, включающий канал подачи топлива на вход в центробежную форсунку. Центробежная форсунка имеет вихревую камеру с завихрителями на входе и соплом на выходе. Лопатки завихрителя воздуха выполнены полыми, а их выходные кромки по радиусу канала имеют сквозные отверстия. Завихрители топлива на входе в вихревую камеру выполнены в виде шнека со сквозными винтовыми канавками на его наружной поверхности. Вихревая камера через равномерно расположенные по окружности сквозные наклонные к оси отверстия перепуска топлива в шнеке и магистраль, в которой установлен перепускной клапан с корпусом, соединена с полостями лопаток завихрителя воздуха. Стенка вихревой камеры со стороны сопла выполнена типа конусной или сферической и снабжена равномерно расположенными по окружности наклонными к оси сквозными отверстиями. Изобретение позволяет снизить уровень дымления и эмиссию вредных веществ в продуктах сгорания топлива, получить высокую эффективность и устойчивость горения в камере сгорания и исключить непроизводительный перепуск топлива из форсунки в бак. 4 з.п. ф-лы, 4 ил.
1. Центробежно-пневматическая форсунка, содержащая полый корпус воздушного канала с участком сужения, снабженный лопаточным завихрителем воздуха на входе, установленный по оси корпуса до его минимального поперечного сечения распылитель топлива с центробежной форсункой, включающий канал подачи топлива на вход в центробежную форсунку, которая имеет вихревую камеру с завихрителями на входе и соплом на выходе, отличающаяся тем, что лопатки завихрителя воздуха выполнены полыми, а их выходные кромки по радиусу канала имеют сквозные отверстия, завихрители топлива на входе в вихревую камеру выполнены в виде шнека со сквозными винтовыми канавками на его наружной поверхности, причем вихревая камера через равномерно расположенные по окружности сквозные наклонные к оси отверстия перепуска топлива в шнеке и магистраль, в которой установлен перепускной клапан с корпусом, соединена с полостями лопаток завихрителя воздуха, кроме того, стенка вихревой камеры со стороны сопла выполнена типа конусной или сферической и снабжена равномерно расположенными по окружности наклонными к оси сквозными отверстиями.
2. Центробежно-пневматическая форсунка по п.1, отличающаяся тем, что перепускной клапан содержит полый плунжер со сквозными отверстиями в боковой стенке, установленный внутри корпуса и поджатый пружиной до упора в торцевую кромку корпуса.
3. Центробежно-пневматическая форсунка по п.2, отличающаяся тем, что корпус распылителя в зоне лопаток завихрителя воздуха внутри снабжен кольцевым топливным коллектором, сопряженным гидравлически с внутренними полостями лопаток и через отверстия с полостью плунжера.
4. Центробежно-пневматическая форсунка по п.2, отличающаяся тем, что пружина в корпусе поджата резьбовой пробкой.
5. Центробежно-пневматическая форсунка по п.1, отличающаяся тем, что входы в отверстия перепуска топлива в шнеке расположены на середине радиуса вихревой камеры.
ГОРЕЛКА | 1991 |
|
RU2013693C1 |
ГОРЕЛКА | 1996 |
|
RU2099639C1 |
СПОСОБ ПОДГОТОВКИ СМЕСИ ВОЗДУХА С ТОПЛИВОМ И ЕЕ СЖИГАНИЯ В КАМЕРЕ СГОРАНИЯ ТЕПЛОЭНЕРГОУСТАНОВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2116574C1 |
US 5450725 A, 19.09.1995 | |||
US 4498288 A, 12.02.1985 | |||
US 4982570 A, 08.01.1991. |
Авторы
Даты
2009-11-27—Публикация
2008-04-22—Подача