СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ Российский патент 2009 года по МПК H02K19/06 H02K19/10 H02K16/00 H02K21/12 

Описание патента на изобретение RU2375806C1

Изобретение относится к электрическим машинам, а конкретно к синхронным двигателям с возбуждением от постоянных магнитов, и может быть использовано в качестве компактного агрегата "двигатель-редуктор" в механических системах с большим ресурсом работы при ударных нагрузках, например, в качестве мотора-колеса экологически чистых автомобилей.

Известен синхронный двигатель с магнитной редукцией, содержащий корпус, вал, зубчатый статор с трехфазной обмоткой и зубчатый ротор (патент №2076433, Н02К 19/06, опубл. 2003.07.10, Бюл. №19) - [1].

Недостатком данного двигателя являются низкие массогабаритные показатели, поскольку взаимодействие между статором и ротором происходит на одной цилиндрической поверхности в рабочем зазоре.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является синхронный электродвигатель, имеющий корпус, пакет статора с зубцами и с многофазной обмоткой, магнитопровод ротора с зубцами, вал, чередующиеся коаксиальные полые цилиндры ротора и статора, состоящие из ферромагнитных и немагнитных элементов, расположенных вдоль оси вращения, причем цилиндры ротора механически связаны с магнитопроводом ротора, а цилиндры статора - с корпусом, при этом зубцы и ферромагнитные элементы цилиндров статора, а также зубцы магнитопровода и ферромагнитные элементы цилиндров ротора имеют свои одинаковые угловые положения (патент №2321140, Н02К 19/06, Н02К 19/00, опубл. 27.03.2008, Бюл. №9) - [2].

Недостатком данного двигателя являются низкие энергетические показатели, связанные с большими потерями энергии в обмотке статора. Она должна создавать значительную магнитодвижущую силу, достаточную для преодоления магнитным потоком многослойной магнитной системы. Далее по принципу действия данный электродвигатель является реактивным, и обмотка статора должна создавать как продольную, так и поперечную составляющие магнитного потока.

Технический результат, на достижение которого направлено заявленное изобретение, - снижение энергопотребления электродвигателя, т.е. снижение мощности потерь при заданных габаритах двигателя и большом выходном моменте.

Технический результат достигается тем, что в синхронный электродвигатель, имеющий корпус, пакет статора с зубцами и с многофазной обмоткой, вал, чередующиеся коаксиальные полые цилиндры ротора и статора, состоящие из ферромагнитных и немагнитных элементов, расположенных вдоль оси вращения, причем цилиндры ротора механически связаны с ротором, а цилиндры статора - с корпусом, при этом зубцы и ферромагнитные элементы цилиндров статора, а также зубцы магнитопровода и ферромагнитные элементы цилиндров ротора имеют свои одинаковые угловые положения, введены второй пакет статора в виде полого цилиндра с зубцами на его внутренней поверхности, расположенный снаружи от полых цилиндров, вал с ротором быстрого вращения, содержащим высококоэрцитивные постоянные магниты в виде прямоугольных параллелепипедов, расположенные радиально, намагниченные тангенциально и встречно, клинообразные полюсные наконечники, расположенным между полыми цилиндрами и пакетом статора с многофазной обмоткой, имеющим обращенную конструкцию. Сущность заявленного изобретения поясняется на Фиг.1-3, где

Фиг.1 - поперечное сечение синхронного электродвигателя;

Фиг.2 - продольное сечение синхронного электродвигателя;

Фиг.3 - волна магнитной индукции и развертка полых цилиндров.

Здесь 1 - корпус, 2 - пакет статора, 3 - трехфазная обмотка, 4 - наружный пакет, 5 - полые цилиндры статора, 6 - полые цилиндры ротора, 7 - полюсные наконечники, 8 - постоянные магниты, 9, 10 - немагнитные диски, 11 - подшипники вала быстрого вращения, 12 - вал быстрого вращения, 13 - подшипники вала медленного вращения, 14 - вал медленного вращения.

Синхронный электродвигатель имеет корпус 1, внутренний пакет статора 2 с многофазной обмоткой 3, наружный пакет 4, полые цилиндры статора 5, ротор медленного вращения с полыми цилиндрами 6, подшипниками 13 и валом 14, ротор быстрого вращения с прямоугольными высококоэрцитивными постоянными магнитами 8 (например, самарий-кобальтовыми или из сплава ниодим-железо-бор), намагниченными тангенциально, и клинообразные полюсные наконечники 7 с выпуклыми профилированными поверхностями, обращенными к внутреннему и наружному рабочим зазорам, подшипники 11 и вал быстрого вращения 12. Полые цилиндры ротора 6 и полюсные наконечники 7 с постоянными магнитами 8 крепятся немагнитными дисками 9, 10 к валу медленного 14 и быстрого вращения 12 соответственно.

Кольцевой шихтованный магнитопровод 4 имеет равномерно расположенные зубцы, обращенные к рабочему зазору. Полые цилиндры 5 и 6 имеют чередующиеся ферромагнитные и немагнитные элементы, параллельные оси вращения. Угловые размеры всех зубцов и ферромагнитных элементов полых цилиндров одинаковые. Магнитные элементы полых цилиндров, связанных со статором, имеют угловое положение, совпадающее с угловым положением зубцов магнитопровода статора. Количество ферромагнитных элементов полых цилиндров, связанных со статором и с ротором медленного вращения, отличаются в пределах одного полюсного деления ротора быстрого вращения на единицу.

Синхронный электродвигатель работает следующим образом. На многофазную обмотку 3 статора подается многофазная система напряжений. Возникает вращающееся магнитное поле, которое взаимодействует с магнитными потоками, выходящими из клинообразных полюсных наконечников 7 во внутренний воздушный зазор. Ротор быстрого вращения вращается с угловой частотой

где ω - угловая частота переменных напряжений; p - число пар полюсов ротора быстрого вращения (здесь p=4). Магнитные потоки, выходящие из клинообразных полюсных наконечников 7 в наружный воздушный зазор, разделяются на большое число струек потока, которые многократно изгибаются и создают большой момент на выходном валу 14.

Постоянные магниты 8 ротора быстрого вращения и полюсные наконечники 7 создают в рабочих зазорах синусоидально распределенную магнитную индукцию. Максимальное по модулю значение магнитной индукции достигается посередине полюсных наконечников. В рабочих зазорах напротив середин постоянных магнитов радиальная составляющая магнитной индукции равна нулю.

При вращении ротора быстрого вращения со скоростью ω1 волна магнитной индукции вращается с той же угловой скоростью. При этом полые цилиндры, связанные с ротором медленного вращения, при отсутствии момента нагрузки будут занимать положение, при котором в зоне максимума модуля магнитной индукции ферромагнитные элементы полых цилиндров 6 занимают угловое положение, совпадающее с угловым положением цилиндров 5 и зубцов на наружном пакете 4. В зоне нейтралей ферромагнитные элементы 6 расположены напротив немагнитных элементов полых цилиндров 5 и пазов пакета 4. При повороте ротора быстрого вращения на одно полюсное деление ротор медленного вращения повернется на одно зубцовое деление.

На Фиг.3 показана волна магнитной индукции B(β) и развертка втулок. Зубцы пакета 4 и ферромагнитные элементы полого цилиндра 5 неподвижны. В зоне максимума амплитуды магнитной индукции все ферромагнитные элементы и зубцы расположены друг против друга.

В зонах нейтралей, соответствующих серединам магнитов 8, ферромагнитные элементы полых цилиндров 6, связанных с ротором медленного вращения, расположены напротив немагнитных элементов цилиндра 5 и напротив пазов на пакете 4. Когда ротор быстрого вращения повернется на одно полюсное деление, полюсы N и S поменяются местами, а полые цилиндры 6 повернутся на один ферромагнитный элемент (на зубцовое деление). На Фиг.3 показан случай, когда передаточное отношение редуктора равно 7, т.е. ротор медленного вращения вращается со скоростью

ω21/7.

Угловая скорость вала 14 и выходной момент определяются выражениями

где ip - коэффициент магнитной редукции, zр - количество ферромагнитных элементов полого цилиндра ротора.

Угловая скорость двигателя на Фиг.1, 2 при частоте питания ƒ=50 Гц будет равна

Момент синхронного двигателя М определяется формулой

где Lf - взаимная индуктивность между обмоткой возбуждения (или обмоткой, эквивалентной постоянному магниту) и соосной продольной фазой статора; if - ток возбуждения или ток обмотки, эквивалентной постоянному магниту; id, iq - токи продольной и поперечной фаз обмотки статора; Ld, Lq - индуктивности этих фаз.

В синхронном реактивном двигателе (прототип) имеется только второе слагаемое в формуле момента. Пусть p=1, Ld=2 у.е., Lq=1 у.е., id=1 у.е., iq=1 у.е., r=1 у.е. (у.е. - условные единицы). Тогда реактивный момент и мощность потерь имеют значения

М=1(2-1)1·1=1 у.е.,

Синхронный двигатель с электромагнитным возбуждением имеет момент и мощность потерь:

M=1·2·1·1=2 у.е.,

При Lf=2 у.е., if=1 у.е., id=0 у.е., iq=1 у.е., rf=1 у.е.

В предлагаемом двигателе с возбуждением от постоянных магнитов можно положить при тех же величинах

M=2 у.е.,

Произведение Lf if зависит от МДС обмотки возбуждения или от постоянного магнита. Высококоэрцитивные постоянные магниты (например, SmCo5) имеют Hc=500 А/мм или в точке максимума энергии Hd=250 А/мм.

При плотности тока j=4 А/мм2 и коэффициенте заполнения медью kз.м.=0,4 такой постоянный магнит соответствует обмотке с толщиной

При меньшей толщине обмотки момент при переходе к постоянным магнитам возрастает в большой степени при одновременном снижении мощности потерь.

Таким образом, введением ротора быстрого вращения и дополнительного статора при обращенной конструкции машины был получен двигатель с большим моментом и малой мощностью потерь.

Похожие патенты RU2375806C1

название год авторы номер документа
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 2008
  • Афанасьев Анатолий Юрьевич
  • Давыдов Николай Владимирович
RU2356155C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2013
  • Афанасьев Анатолий Юрьевич
  • Завгороднев Максим Юрьевич
  • Ефремов Дмитрий Олегович
RU2544835C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2015
  • Афанасьев Анатолий Юрьевич
  • Макаров Алексей Витальевич
  • Березов Николай Алексеевич
RU2604058C1
Синхронный электродвигатель с магнитной редукцией 2017
  • Афанасьев Анатолий Юрьевич
  • Макаров Валерий Геннадьевич
  • Березов Николай Алексеевич
  • Газизов Ильдар Фависович
RU2668817C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2015
  • Афанасьев Анатолий Юрьевич
  • Берёзов Николай Алексеевич
  • Макаров Алексей Витальевич
  • Сиразетдинов Рифкат Талгатович
  • Деваев Вячеслав Михайлович
RU2588599C1
Синхронный электродвигатель с магнитной редукцией 2018
  • Афанасьев Анатолий Юрьевич
  • Березов Николай Алексеевич
  • Килиманов Константин Алексеевич
  • Макаров Валерий Геннадьевич
RU2704491C1
Синхронный электродвигатель для винта вертолета 2019
  • Афанасьев Анатолий Юрьевич
  • Березов Николай Алексеевич
  • Рыбушкин Николай Анатольевич
RU2708382C1
МОТОР-КОЛЕСО 2017
  • Афанасьев Анатолий Юрьевич
  • Макаров Алексей Витальевич
  • Березов Николай Алексеевич
  • Газизов Ильдар Фависович
RU2673587C1
Мотор-колесо для летательного аппарата 2022
  • Каримов Артур Рафаэлевич
RU2784743C1
МОТОР-КОЛЕСО 2017
  • Афанасьев Анатолий Юрьевич
  • Газизов Ильдар Фависович
  • Кунгурцев Андрей Алексеевич
  • Берёзов Николай Алексеевич
RU2655098C1

Иллюстрации к изобретению RU 2 375 806 C1

Реферат патента 2009 года СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается выполнения синхронных электродвигателей с возбуждением от постоянных магнитов, и может быть использовано в качестве компактного агрегата «двигатель-редуктор» в механических системах с большим ресурсом работы при ударных нагрузках, например, в качестве мотора-колеса в экологически чистых автомобилях. Предлагаемый синхронный электродвигатель содержит корпус, пакет статора с зубцами и с многофазной обмоткой, вал, чередующиеся коаксиальные полые цилиндры ротора и статора, состоящие из ферромагнитных и немагнитных элементов, расположенных вдоль оси вращения, причем цилиндры ротора механически связаны с ротором, а цилиндры статора - с корпусом, при этом зубцы и ферромагнитные элементы цилиндров статора, а также зубцы магнитопровода и ферромагнитные элементы цилиндров ротора имеют свои одинаковые угловые положения. При этом согласно изобретению в синхронный электродвигатель введены второй пакет статора в виде полого цилиндра с зубцами на его внутренней поверхности, расположенный снаружи от полых цилиндров, вал с ротором быстрого вращения, содержащим высококоэрцитивные постоянные магниты в виде прямоугольных параллелепипедов, расположенные радиально, намагниченные тангенциально и встречно, клинообразные полюсные наконечники, расположенным между полыми цилиндрами и пакетом статора с многофазной обмоткой, имеющим обращенную конструкцию. Технический результат - улучшение массогабаритных показателей данных электродвигателей. 3 ил.

Формула изобретения RU 2 375 806 C1

Синхронный электродвигатель, имеющий корпус, пакет статора с зубцами и с многофазной обмоткой, вал, чередующиеся коаксиальные полые цилиндры ротора и статора, состоящие из ферромагнитных и немагнитных элементов, расположенных вдоль оси вращения, причем цилиндры ротора механически связаны с ротором, а цилиндры статора - с корпусом, при этом зубцы и ферромагнитные элементы цилиндров статора, а также зубцы магнитопровода и ферромагнитные элементы цилиндров ротора имеют свои одинаковые угловые положения, отличающийся тем, что введены второй пакет статора в виде полого цилиндра с зубцами на его внутренней поверхности, расположенный снаружи от полых цилиндров, вал с ротором быстрого вращения, содержащим высококоэрцитивные постоянные магниты в виде прямоугольных параллелепипедов, расположенные радиально, намагниченные тангенциально и встречно, клинообразные полюсные наконечники, расположенные между полыми цилиндрами и пакетом статора с многофазной обмоткой, имеющим обращенную конструкцию.

Документы, цитированные в отчете о поиске Патент 2009 года RU2375806C1

СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 2006
  • Афанасьев Анатолий Юрьевич
  • Давыдов Николай Владимирович
RU2321140C1
СИНХРОННЫЙ ДВИГАТЕЛЬ С ЭЛЕКТРОМАГНИТНОЙ РЕДУКЦИЕЙ 1995
  • Лузин Михаил Иванович
RU2076433C1
RU 94018159 A1, 10.01.1996
Синхронный электродвигатель 1979
  • Голиков Николай Николаевич
  • Алексеев Владимир Львович
  • Григорьев Георгий Дмитриевич
  • Гущина Ольга Алексеевна
  • Погодин Владимир Николаевич
  • Кудряшов Константин Егорович
SU858183A1
ДВИГАТЕЛЬ 2000
  • Аристов Б.Н.
  • Бобров Ю.Н.
  • Мамасуев В.М.
  • Мелешина Г.А.
  • Осипик В.А.
  • Осипик М.В.
  • Панарин А.Н.
  • Петров Ю.П.
  • Цурин В.И.
RU2176844C2
СПОСОБ ИНКАПСУЛЯЦИИ ФЕНБЕНДАЗОЛА 2012
  • Быковская Екатерина Евгеньевна
  • Кролевец Александр Александрович
RU2522267C2
US 5517102 A, 14.05.1996.

RU 2 375 806 C1

Авторы

Афанасьев Анатолий Юрьевич

Давыдов Николай Владимирович

Даты

2009-12-10Публикация

2008-10-07Подача