СПОСОБ ПОЛУЧЕНИЯ ПОЛИФУНКЦИОНАЛЬНЫХ ФОТОННЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ИНВЕРТИРОВАННОГО ОПАЛА Российский патент 2010 года по МПК H01L31/256 

Описание патента на изобретение RU2383082C1

Изобретение относится к технологии оптоэлектроники и может быть использовано для получения полифункциональных пленочных инвертированных фотонных кристаллов с запрещенной зоной в видимой и ИК-области спектра.

Наиболее распространенным методом получения фотонных кристаллов является метод, основанный на упорядочивании микросфер SiO2 (CN 1808214 от 2006-07-26) или полистирола (US 2005270633 от 2005-12-08) в структуру прямого опала. Такие методики позволяют создавать фотонные кристаллы, имеющие низкий оптический контраст, что приводит к уменьшению полуширины их фотонной запрещенной зоны, а следовательно, ограничивает возможности применения.

Лишены этого недостатка способы, позволяющие получать фотонные кристаллы со структурой инвертированного опала (US 2005175774 от 2005-08-11, CN 1880519 от 2006-12-20). В этом случае каркас из микросфер SiO2 или полистирола используется в качестве темплата (матрицы), которая в процессе химической или термической обработки удаляется, а на месте пустот исходной матрицы формируется материал с высокой диэлектрической проницаемостью. Такие методы позволяют создавать инвертированные кристаллы с высоким оптическим контрастом на основе TiO2, SiO2. В то же время используемые в них материалы обладают низкими функциональными возможностями и пригодны для создания только оптических структур на их основе.

Основной задачей, на решение которой направлен заявленный способ, является получение полифункциональных инвертированных кристаллов на основе материалов с комбинированными оптическими, электрическими и магнитными свойствами с низкой концентрацией дефектов.

Технический результат изобретения заключается в использовании в качестве активного материала фотонного кристалла различных материалов, обладающих уникальными физическими свойствами и техническими характеристиками, а также в получении инвертированных фотонно-кристаллических структур, пригодных для производства оптоэлектронных (электрооптических и магнитооптических) приборов на их основе.

Указанный технический результат достигается тем, что в качестве материала фотонного кристалла используются:

- силикаты Mg2SiO4 и Zn2SiO4, являющиеся широкоиспользуемыми матрицами для люминесцентных ионов;

- ферриты LiFe5O8 и BaFe12O19 с магнитными свойствами;

- титанаты BaTiO3 и SrTiO3 с сегнетоэлектическими свойствами;

- алюминаты MgAl2O4 и Y3Al5O12 с ценными оптическими свойствами.

Технологический процесс получения полифункциональных инвертированных фотонно-кристаллических структур на основе сложных оксидов по заявленному способу представлен на схеме (фиг.1). Здесь: а - формирование темплата на основе монодисперсных микросфер полистирола; б - пропитка темплата веществом прекурсором; в - термическое удаление темплата и синтез в его пустотах необходимого соединения.

Способ получения пленочных фотонных кристаллов со структурой инвертированного опала заключается в следующем. Синтез инвертированных фотонных кристаллов осуществляется в соответствии с общей схемой, приведенной на фиг.1. На первом этапе, готовится суспензия монодисперсных микросфер полистирола с концентрацией 1 мас.% микросфер в воде. Затем монодисперсные коллоидные микросферы равномерно «упаковывают» в виде трехмерных решеток (коллоидных кристаллов), методом осаждения на вертикальную подложку под действием капиллярных сил при температуре 50°С фиг.1а. В зависимости от условий синтеза размер микросфер может варьироваться в интервале 400-1000 нм.

На втором этапе, пустоты темплатной структуры заполняют веществом прекурсором, фиг.1б. В зависимости от того, какое вещество необходимо получить использовали различные насыщенные (до выпадения осадка) растворы прекурсоров в воде.

В случае инвертированных опалов Mg2SiO4 и Zn2SiO4 для пропитки темплатной матрицы использовали смеси тетраэтоксисилана Si(OC2H5)4 и нитрата магния Mg(NO3)2 или цинка Zn(NO3)2 соответственно в мольном соотношении Mg(NO3)2:Si(OC2H5)4=2:1 и Zn(NO3)2:Si(OC2H5)4=2:1.

В случае инвертированных опалов BaTiO3 и SrTiO3 для пропитки темплатной матрицы использовали смеси бутилата титана Ti(OC4H9)4 и нитрата бария Ba(NO3)2 или стронция Sr(NO3)2 соответственно в мольном соотношении 1:1.

В случае инвертированных опалов LiFe5O8 и BaFe12O19, MgAl2O4 и Y3Al5O12, готовили растворы нитратов LiNO3, Fe(NO3)3 в мольном соотношении 1:5, Ba(NO3)2, Fe(NO3)3 в мольном соотношении 1:12, Mg(NO3)2, Al(NO3)3 в мольном соотношении 1:2, Y(NO3)3, Al(NO3)3 в мольном соотношении 3:5. Далее, подложку с приготовленным темплатом погружали в раствор прекурсора на 24 часа, в результате чего происходит заполнение пустот. После чего образец высушивается при температуре 80°С в течение 5 часов.

На последнем этапе формируется фотонный кристалл со структурой инвертированного опала фиг.1в. Для этого образцы подвергают медленному нагреву со скоростью 0,1°С/мин и последующему отжигу при температуре 500°С в течение 10 часов. В результате полистирольная матрица удаляется, а на месте ее пустот формируется необходимый материал требуемого состава.

Концентрация монодисперсных микросфер полистирола выбрана на основании экспериментальных данных по исследованию структуры и функциональности растущего слоя. При концентрациях менее 1 мас.% получаются пленки малой толщины, и энергетический спектр фотонов в таких кристаллах становится чувствительным к рассеянию света на поверхностных неоднородностях, что ограничивает возможности применения данного метода. При концентрациях более 1 мас.% получаются пленки с высокой концентрацией точечных и линейных дефектов, а также с неупорядоченной доменной структурой.

Температура осаждения микросфер на вертикальную подложку под действием капиллярных сил выбрана исходя из экспериментальных данных по влиянию температуры на скорость формирования кристалла. При температурах менее 50°С скорость осаждения мала, так как мала скорость испарения растворителя - воды. При более высоких температурах в растущем слое наблюдаются флуктуации положения микросфер, связанные с броуновским движением, что приводит к росту структурных дефектов в кристалле.

Задание интервала размеров микросфер полистирола объясняется необходимостью получения инвертированных фотонных кристаллов с фотонной запрещенной зоной в видимой и ближней ИК-области спектра. Микросферы с размерами не входящими в этот интервал позволяют получать инвертированные кристаллы для ультрафиолетовой и дальней ИК-области спектра.

Мольные соотношения прекурсоров Zn(NO3)2:Si(OC2H5)4=2:1, Mg(NO3)2:Si(OC2H5)4=2:1, Ti(OC4H9)4:Ba(NO3)2=1:1, Ti(OC4H9)4:Sr(NO3)2=1:1, LiNO3:Fe(NO3)3=1:5, Ba(NO3)2:Fe(NO3)3=1:12, Mg(NO3)2:Al(NO3)3=1:2, Y(NO3)3:Al(NO3)3=3:5 выбраны из необходимости получения инвертированных фотонных кристаллов на основе материалов Mg2SiO4, Zn2SiO4, LiFe5O8, BaFe12O19, BaTiO3, SrTiO3, MgAl2O4 и Y3Al5O12, обладающих стехиометрией. Нестехиометричные материалы, указанные в заявке, характеризуются отсутствием уникальных оптических, электрических и магнитных свойств, что затруднит их практическое применение.

Время выдерживания подложки с темплатом в растворе прекурсора выбрано из необходимости полного заполнения пустот полистирольной матрицы веществами прекурсорами. При выдерживании подложки в растворе менее 24 часов, темплат пропитывается не полностью. В дальнейшем это приводит к тому, что инвертированная структура не формируется. В выдерживании подложки более 24 часов необходимость отсутствует, так как пустоты темплата уже полностью заполнены прекурсором.

Температура и время сушки темплата, заполненного прекурсором, выбрана исходя из необходимости удаления растворителя (воды). Как показали экспериментальные результаты, сушка образца при температуре 80°С в течение 5 часов приводит к наиболее интенсивному испарению остаточной воды без повреждения структурного каркаса образца.

Скорость нагрева при отжиге выбрана исходя из необходимости медленного разложения полистирола с сохранением структуры инвертированного опала.

Температура и время отжига темплата, заполненного прекурсором, выбраны на основании структурных исследований материала, составляющего каркас инвертированного кристалла. Как показали эти исследования отжиг при температуре 500°С в течение 10 часов позволяет получить фотонные кристаллы со структурой инвертированного опала на основе всех заявленных материалов.

В результате получаются фотонные кристаллы со структурой инвертированного опала, электронно-микроскопическое изображение которых показано на фиг.2. Как видно из этих изображений все инвертированные фотонные кристаллы, имеют упорядоченную микроструктуру. В поверхностном слое полученных образцов присутствуют такие дефекты как вакансии и их скопления с концентрацией порядка одного дефекта на 2 мкм2. Все инвертированные фотонные кристаллы имели фотонные запрещенные зоны в видимом и ИК-диапазоне спектра. В качестве примера на фиг.11 приведены спектры пропускания инвертированного фотонного кристалла на основе силиката магния Mg2SiO4, снятые при различных углах падения света от 0° (нижний спектр) до 67.5° (верхний спектр) с шагом 2.5°. Спектры смещены в вертикальном направлении для наглядности. Наличие смещения глубины провала в спектрах пропускания характерно для инвертированных фотонных кристаллов.

Похожие патенты RU2383082C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ФОТОННО-КРИСТАЛЛИЧЕСКИХ СТРУКТУР НА ОСНОВЕ МЕТАЛЛООКСИДНЫХ МАТЕРИАЛОВ 2011
  • Стриханов Михаил Николаевич
  • Каргин Николай Иванович
  • Бондаренко Евгений Алексеевич
  • Юсова Мария Вадимовна
  • Бондаренко Сергей Алексеевич
RU2482063C2
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦЕНТНЫХ ФОТОННЫХ КРИСТАЛЛОВ С КОНТРОЛИРУЕМОЙ НАПРАВЛЕННОСТЬЮ ИЗЛУЧЕНИЯ 2008
  • Климонский Сергей Олегович
  • Синицкий Александр Сергеевич
  • Бондаренко Евгений Алексеевич
  • Михнев Леонид Васильевич
  • Гусев Александр Сергеевич
  • Каргин Николай Иванович
  • Бондаренко Сергей Алексеевич
RU2383040C1
СПОСОБ ФОРМИРОВАНИЯ ТЕРМОЧУВСТВИТЕЛЬНЫХ НАНОКОМПОЗИЦИОННЫХ ФОТОННЫХ КРИСТАЛЛОВ 2011
  • Шахнов Вадим Анатольевич
  • Панфилов Юрий Васильевич
  • Булыгина Екатерина Вадимовна
  • Моисеев Константин Михайлович
  • Янович Сергей Владиславович
  • Беседина Ксения Николаевна
  • Власов Андрей Игоревич
  • Токарев Сергей Владимирович
  • Якимец Дмитрий Вадимович
RU2467362C1
СПОСОБ УСИЛИНЕНИЯ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА КЕРРА С ПОМОЩЬЮ ФОТОННОКРИСТАЛЛИЧЕСКИХ СТРУКТУР 2011
  • Елисеев Андрей Анатольевич
  • Саполетова Нина Александровна
  • Напольский Кирилл Сергеевич
  • Грунин Андрей Анатольевич
  • Федянин Андрей Анатольевич
RU2551401C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ФОТОННЫХ КРИСТАЛЛОВ ИЗ ОКСИДА КРЕМНИЯ 2006
  • Климонский Сергей Олегович
  • Синицкий Александр Сергеевич
  • Хохлов Павел Евгеньевич
  • Третьяков Юрий Дмитриевич
RU2358895C2
СПОСОБ ФОРМИРОВАНИЯ ПЛЕНОК ФОТОННЫХ КРИСТАЛЛОВ (ФК) НА ПРОВОДЯЩИХ ПОДЛОЖКАХ 2007
  • Григорьев Сергей Валентинович
  • Напольский Кирилл Сергеевич
  • Саполетова Нина Александровна
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
  • Третьяков Юрий Дмитриевич
  • Григорьева Наталья Анатольевна
RU2371525C2
СПОСОБ ФОРМИРОВАНИЯ СВЕРХРЕШЕТОК НАНОКРИСТАЛЛОВ НА ПРОВОДЯЩИХ ПОДЛОЖКАХ 2009
  • Елисеев Андрей Анатольевич
  • Напольский Кирилл Сергеевич
  • Горожанкин Дмитрий Федорович
  • Саполетова Нина Александровна
  • Лукашин Алексей Викторович
  • Лысков Николай Викторович
  • Добровольский Юрий Анатольевич
RU2433083C2
СПОСОБ ОСАЖДЕНИЯ НАНОЧАСТИЦ ЗОЛОТА НА МИКРОСФЕРЫ КРЕМНЕЗЕМА 2012
  • Кучьянов Александр Сергеевич
  • Плеханов Александр Иванович
  • Игуменов Игорь Константинович
  • Кучумов Борис Максимович
  • Пархоменко Роман Григорьевич
  • Трубин Сергей Владимирович
RU2489230C1
СПОСОБ ПОЛУЧЕНИЯ АДАПТИВНО-СЕЛЕКТИВНОГО К РЕДКОЗЕМЕЛЬНЫМ МЕТАЛЛАМ ИОНООБМЕННОГО МАТЕРИАЛА 2012
  • Кондруцкий Дмитрий Алексеевич
  • Гаджиев Гаджи Рабаданович
  • Бобров Александр Фаддеевич
  • Каблов Виктор Федорович
  • Нестеров Алексей Геннадьевич
RU2515455C2
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМАГНИЙОКСАНИТТРИЙОКСАНАЛЮМОКСАНОВ, СВЯЗУЮЩИЕ И ПРОПИТОЧНЫЕ МАТЕРИАЛЫ НА ИХ ОСНОВЕ 2017
  • Щербакова Галина Игоревна
  • Кривцова Наталия Сергеевна
  • Кутинова Наталья Борисовна
  • Апухтина Татьяна Леонидовна
  • Варфоломеев Максим Сергеевич
  • Драчев Александр Иванович
  • Стороженко Павел Аркадьевич
RU2644950C1

Иллюстрации к изобретению RU 2 383 082 C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ ПОЛИФУНКЦИОНАЛЬНЫХ ФОТОННЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ИНВЕРТИРОВАННОГО ОПАЛА

Изобретение относится к технологии оптоэлектроники и может быть использовано для получения полифункциональных пленочных инвертированных фотонных кристаллов с запрещенной зоной в видимой и ИК-области спектра, и пригоден для производства оптоэлектронных (электрооптических и магнитооптических) приборов на основе инвертированных фотонных кристаллов. Способ получения полифункциональных фотонных кристаллов со структурой инвертированного опала предусматривает использование в качестве темплата прямые фотонные кристаллы на основе полистирола. В качестве материалов, составляющих фотонный кристалл со структурой инвертированного опала, используются соединения с комбинированными оптическими, электрическими и магнитными свойствами Zn2SiO4, LiFe5O8, BaFe12O19, BaTiO3, SrTiO3, MgAl2O4 и Y3Al5O12. Способ обеспечивает получение полифункциональных фотонных кристаллов со структурой инвертированного опала с низкой концентрацией дефектов (порядка одного на 2 мкм2) и обладающих фотонной запрещенной зоной в видимой и ближней ИК-области спектра. 3 ил.

Формула изобретения RU 2 383 082 C1

Способ получения полифункциональных фотонных кристаллов со структурой инвертированного опала с низкой концентрацией дефектов порядка одного на 2 мкм2, основанный на темплатном методе, отличающийся тем, что в качестве материалов, из которых формируется каркас фотонного кристалла, используются соединения с комбинированными оптическими, электрическими и магнитными свойствами Zn2SiO4, LiFe5O8, BaFe12O19, BaTiO3, MgAl2O4 и Y3Al5O12.

Документы, цитированные в отчете о поиске Патент 2010 года RU2383082C1

RU 2006133739 А, 27.03.2008
JP 2000233999 A, 29.08.2000
US 2005175774 A1, 11.08.2005
CN 1880519 A, 20.12.2006.

RU 2 383 082 C1

Авторы

Климонский Сергей Олегович

Синицкий Александр Сергеевич

Бондаренко Евгений Алексеевич

Михнев Леонид Васильевич

Гусев Александр Сергеевич

Каргин Николай Иванович

Бондаренко Сергей Алексеевич

Абрамова Вера Владимировна

Самсонова Елена Валерьевна

Даты

2010-02-27Публикация

2008-10-13Подача