СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА Российский патент 2010 года по МПК B64G1/50 

Описание патента на изобретение RU2384491C2

Изобретение, созданное авторами в порядке выполнения служебного задания, относится к космической технике, в частности к системам терморегулирования (СТР) приборов телекоммуникационного спутника.

Анализ показал, что при суммарной избыточной тепловой мощности, выделяющейся при работе приборов спутника, в сеансе связи, например, 15000 Вт (потребляемая электрическая мощность приборов 22,5 кВт), для обеспечения требуемого теплового режима приборов с точки зрения оптимальных массовых и энергетических затрат на СТР спутника (т.е. с точки зрения обеспечения минимально возможной массы и энергопотребления СТР с учетом дополнительной массы и энергопотребления других систем спутника, обусловленных функционированием применяемой на борту спутника СТР: например, повышенное энергопотребление СТР потребует дополнительного увеличения площади солнечных батарей и, следовательно, массы, а также энергопотребления системы электропитания (СЭП); а повышенный кинетический момент функционирующей СТР потребует дополнительного увеличения массы и энергопотребления системы ориентации и стабилизации (СОС) из-за необходимости предусмотреть в ее составе, например, дополнительный двигатель-маховик) предпочтительно использование СТР, включающей в себя контур с двухфазным теплоносителем, например аммиаком.

Известны такие СТР с механическими насосами, например, центробежными гидронасосами, приведенные в монографии «Центр научно-технической информации «Поиск». А.А.Никонов, Г.А.Горбенко, В.Н.Блинков. Теплообменные контуры с двухфазным теплоносителем для систем терморегулирования космических аппаратов (обзор по материалам отечественной и зарубежной печати). Серия: Ракетно-космическая техника. Машиностроение. Москва, 1991 г., на страницах 44-52» [1] и «Thermostatic Control of Two-Phase Spacecraft Thermal Management Systems. B.A.Cullimoze and R.C.Epper. AJAA Pap. 1986, № 1246» [2], которые содержат соединенные между собой линиями тракта теплообменник-испаритель, радиатор-конденсатор, регулятор температуры пара в теплообменнике-испарителе, центробежный гидронасос, аккумулятор, жидкостная полость которого ограничена сильфоном (в [2] положение сильфона регулируется связанным с ним электромеханическим приводом; положение сильфона в [1] регулируется давлением газа в газовой полости аккумулятора и масса такого аккумулятора больше массы аккумулятора согласно [2]).

Анализ, проведенный авторами результатов наземных испытаний таких СТР, показал, что они обладают существенным недостатком, а именно: недостаточно высокой надежностью нормального функционирования на теневом участке орбиты при снижении значения теплоподвода к теплоносителю в результате периодического изменения потребляемой электрической мощности приборов (в сеансе связи - максимальное потребление приборов, например, 22,5 кВт, а в дежурном режиме - минимальное потребление приборов, например, 1 кВт, которые чередуются согласно заданной программе работы спутника), обусловленным тем, что при переходном режиме и после в течение до (0,3-0,5) часов продолжается колебание температуры теплообменника-испарителя и, следовательно, термостатируемых приборов, с выходом за нижний допустимый предел изменения температуры (например, от минус 10 до плюс 30°С, вместо от 0 до 30°С).

Из уровня техники известна также СТР - система управления теплом космического аппарата по патенту US 4603732 [3], которая представляет из себя СТР с контуром с двухфазным теплоносителем, включающим в себя теплообменник-испаритель (14), радиатор-конденсатор (12), вход и выход каждого из которых сообщены с соответствующими выходами и входами уравновешивающего устройства (16), выполняющего одновременно функции: насоса (22-58-60-88-90), аккумулятора (22-34-36-38), разделителя жидкой (52) и паровой (54) фаз теплоносителя, регулятор давления пара (66), смеситель (78). Согласно материалам [3] в случае применения в составе спутника (с потребляемой электрической мощностью до 22,5 кВт) СТР с вышеуказанным уравновешивающим устройством устраняется вышеуказанный недостаток известных технических решений [1], [2]; однако, как показал анализ, это приводит к существенному (неприемлемому) дополнительному увеличению массы и энергопотребления системы ориентации и стабилизации и системы электропитания спутника по следующим причинам.

Как было указано выше, для вышеуказанного телекоммуникационного спутника в сеансе связи необходимо отводить в космическое пространство ≈15000 Вт избыточного тепла, выделяющегося при работе приборов спутника.

Проектный анализ показал, что вышеуказанные приборы возможно разместить на сотовых панелях на площади ≈21,5 м2 и в сотовых панелях под приборами необходимо предусмотреть тракты отвода избыточного тепла (15000 Вт) от функционирующих приборов (теплообменник-испаритель) длиной ≈130 м с внутренним диаметром 6 мм (на первой половине участка) и 10 мм (на остальном участке). Для обеспечения отвода всего вышеуказанного избыточного тепла в космическое пространство площадь радиатора-конденсатора должна быть ≈27 м2 с длиной тракта в нем для циркуляции теплоносителя ≈160 м с внутренним диаметром 10 мм (на первой половине участка) и 6 мм (на остальном участке); таким образом, с учетом соединительных трубопроводов общая длина тракта для циркуляции теплоносителя составляет ≈310 м, объем внутренней полости которого равен ≈18 дм3.

Согласно численному анализу при отводе в космическое пространство тепла в количестве 15000 Вт (в сеансе связи) ≈40% объема внутренней полости тракта, где циркулирует теплоноситель, заполнено паровой фазой теплоносителя, a ≈60% объема - жидкой фазой теплоносителя, т.е. внутри вращающегося барабана (22) уравновешивающего устройства (16) с учетом запаса теплоносителя (1,5 дм3 - на возможные утечки в течение эксплуатации спутника на орбите, например, в течение 15 лет, и минимально возможного конструктивного запаса), совместно с барабаном вращается радиальный слой жидкого теплоносителя с объемом (18·0,4+1,5)=8,7 дм3 или ≈5 кг (плотность жидкого аммиака при температуре 20°С равна 0,61 кг/дм3) с частотой вращения, например, 3000 об/мин (согласно расчетам диаметр вращающегося барабана ≈220 мм, а длина ≈350 мм), т.е. при работе уравновешивающего устройства из-за вращения только ≈5 кг жидкой фазы теплоносителя создается неприемлемо большая величина кинетического момента - не менее 13,11 Н·м·с, а с учетом массы вращающегося барабана (4,3 кг) - до (20-22) Н·м·с, приводящая, если не предпринять специальных мер, к нарушению ориентации спутника, например, относительно Земли и Солнца, что недопустимо с точки зрения функционирования спутника на орбите (для сравнения: кинетический момент центробежного гидронасоса и черпакового насоса из технического решения авторов в сумме не превышает 0,035 Н·м·с).

Следовательно, для компенсации кинетического момента, возникающего при работе уравновешивающего устройства, рядом с ним (например) на борту спутника необходимо предусмотреть двигатель-маховик соответствующей конструкции с массой ≈9 кг с частотой вращения 3000 об/мин, но направлением вращения против вращения барабана уравновешивающего устройства. Кроме того, анализ показал, что кинетический момент от работающего уравновешивающего устройства будет намного больше из-за его повышенной массы конструкции барабана (наличие трех камер с перегородками внутри вращающегося барабана и мощного и массивного электропривода для обеспечения вращения всей массивной конструкции барабана с теплоносителем).

Анализ также показал, что потребуется дополнительная масса в системе электропитания, т.к. из-за существенно низкого насосного коэффициента полезного действия и необходимости обеспечения вращения массивной конструкции барабана с жидким теплоносителем потребляемая мощность электропривода уравновешивающего устройства будет на порядок больше (≈300 Вт) потребляемой мощности центробежного гидронасоса с черпаковым насосом (суммарная величина потребляемой электрической мощности центробежного гидронасоса с черпаковым насосом не превышает ≈25 Вт).

Проведенные авторами проектные проработки показали, что массовые затраты в случае применения вышеуказанного уравновешивающего устройства [3] составляют 32,1 кг и намного (в ≈2 раза) больше суммарной массы составляющих (выполняющих те же самые функции, что и уравновешивающее устройство в [3]), предложенной авторами СТР, равной 15,7 кг.

Таким образом, известное техническое решение [3] устраняет недостатки известных технических решений [1] и [2] при неприемлемом дополнительном увеличении массы и энергопотребления спутника и не может быть применено в составе вышеуказанных мощных телекоммуникационных спутников.

Исследования, проведенные авторами, показали, что такое вышеприведенное колебание температур теплообменника-испарителя в [1] и [2] за нижний допустимый предел обусловлено тем, что на вход в радиатор-конденсатор поступает теплоноситель с расходом (массовым), непропорциональным значению теплоподвода из-за различного содержания в теплоносителе паровой и жидкой фаз, т.е. из-за различного паросодержания при различных режимах работы приборов. Исследования также показали, что пропорциональность расхода теплоносителя на входе в радиатор-конденсатор значению теплоподвода в теплообменнике-испарителе гарантируется в случае, если на вход в радиатор-конденсатор [1] и [2] подается только паровая фаза теплоносителя при всех различных режимах работы приборов.

Таким образом, анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является СТР, изображенная на листе 3 по [2].

Принципиальная схема прототипа с основными элементами изображена на фиг.2, где:

- аккумулятор 1, жидкостная полость которого заполнена запасом теплоносителя, достаточным для уменьшения объема паровой фазы теплоносителя в теплообменнике-испарителе и радиаторе-конденсаторе от максимального до минимального значения, соответствующих максимальному (например, 15000 Вт) и минимальному тепловыделению КА (например, 700 Вт); жидкостная полость аккумулятора ограничена гибкой мембраной (сильфоном) и соединена с остальной гидромагистралью; электропривод с механическим приводом 1.1, обеспечивающий по сигналам датчика температуры, установленного в теплообменнике-испарителе 4, изменение положения гибкой мембраны (сильфона) аккумулятора, тем самым изменяя объем запаса теплоносителя в аккумуляторе 1 и, следовательно, объем паровой фазы теплоносителя в теплообменнике-испарителе 4 и радиаторе-конденсаторе 5 и температуру пара теплоносителя в теплообменнике-испарителе 4;

- центробежный гидронасос 2, обеспечивающий необходимые напор и расход теплоносителя в гидравлическом контуре;

- расходомер с блоком управления гидронасосом 2 - регулятор температуры пара 3 в теплообменнике-испарителе 4, обеспечивающий по сигналам датчика температуры, установленного в теплообменнике-испарителе 4, изменение производительности гидронасоса 2 и, следовательно, температуры пара в теплообменнике-испарителе 4;

- теплообменник-испаритель 4, где происходит передача избыточного тепла, выделяющегося при работе приборов КА, циркулирующему через него испаряющемуся теплоносителю;

- радиатор-конденсатор 5, где происходит конденсация паров теплоносителя и охлаждение жидкого теплоносителя до температуры, достаточной для бескавитационной работы гидронасоса 2, и отвод избыточного тепла в космическое пространство.

Как было указано выше, существенным недостатком известной СТР [2] является то, что она имеет недостаточно высокую надежность нормального функционирования на теневом участке орбиты спутника при снижении значения теплоподвода к теплообменнику-испарителю.

Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка при оптимизации массовых и энергетических затрат на СТР КА.

Поставленная цель достигается тем, что в СТР КА, включающей в себя контур с двухфазным теплоносителем, содержащий соединенные между собой линиями тракта аккумулятор, жидкостная полость которого ограничена сильфоном, связанным механическим приводом с электроприводом, связанным, в свою очередь, с датчиком температуры, установленным в теплообменнике-испарителе, гидронасос, теплообменник-испаритель, радиатор-конденсатор и регулятор температуры пара в теплообменнике-испарителе, в контур в качестве разделителя жидкой и паровой фаз теплоносителя введен установленный на входе в радиатор-конденсатор черпаковый насос, вход которого соединен с выходом теплообменника-испарителя, при этом паровой выход черпакового насоса, обеспечивающий подачу паровой фазы теплоносителя, подключен к входу радиатора-конденсатора, а второй выход, обеспечивающий подачу жидкой фазы теплоносителя, - к входу теплообменника-испарителя, что и является по мнению авторов существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами, известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой СТР.

Принципиальная схема предложенной СТР изображена на фиг.1, где контур с двухфазным теплоносителем содержит:

- аккумулятор 1, предназначенный для хранения соответствующего режиму работы СТР объема жидкой фазы теплоносителя; электропривод с механическим приводом 1.1, обеспечивающий по сигналам датчика температуры, установленного в теплообменнике-испарителе 4, изменение положения гибкой мембраны (сильфона) аккумулятора, тем самым изменяя объем запаса теплоносителя в аккумуляторе 1 и, следовательно, объем паровой фазы теплоносителя в теплообменнике-испарителе 4 и радиаторе-конденсаторе 5 и температуру пара теплоносителя в теплообменнике-испарителе 4;

- центробежный гидронасос 2, обеспечивающий циркуляцию теплоносителя в контуре;

- теплообменник-испаритель 4, где происходит кипение теплоносителя в результате подвода тепла от работающих приборов: в сеансе связи теплоноситель на выходе теплообменника-испарителя 4 практически полностью превращается в паровую фазу, а в переходных и дежурных режимах на выходе теплообменника-испарителя 4 теплоноситель состоит из паровой и жидкой фаз;

- регулятор температуры пара 3 в теплообменнике-испарителе 4, обеспечивающий изменение производительности центробежного гидронасоса 2 и, следовательно, температуры пара в теплообменнике-испарителе 4 в соответствии с изменением подводимого тепла: проведенный авторами анализ результатов наземных испытаний известной СТР с двухфазным теплоносителем показал, что регулятор 3 совместно с аккумулятором 1 обеспечивает поддержание температуры теплообменника-испарителя 4 в сеансах связи и дежурном режиме в заданном диапазоне, за исключением времени теневого участка орбиты спутника при переходе с сеанса связи на дежурный режим, когда происходит колебание температуры теплообменника-испарителя 4 (и, следовательно, приборов) с выходом за нижний допустимый предел изменения температуры; анализ также показал, что такое колебание температуры теплообменника-испарителя 4 за допустимый нижний предел обусловлено тем, что на вход радиатора-конденсатора 5 в известной СТР не подается количество теплоносителя, пропорциональное подведенному в теплообменнике-испарителе 4 теплу; для обеспечения пропорциональности необходимо на вход радиатора-конденсатора 5 всегда подавать только паровую фазу теплоносителя:

- в теплообменнике-испарителе 4 количество образующегося пара прямо пропорционально количеству подведенного тепла;

- черпаковый насос 6 в качестве разделителя жидкой и паровой фаз теплоносителя обеспечивает, как показали результаты испытаний, гарантированное разделение фаз и подачу на вход радиатора-конденсатора 5 только паровой фазы теплоносителя (результаты испытаний также подтвердили, что в предложенной СТР регулятор температуры пара 3 и черпаковый насос устойчиво обеспечивали поддержание заданного диапазона температур теплообменника-испарителя 4 в сеансе связи, переходном и дежурном режимах, в том числе в период теневого участка орбиты);

- черпаковый насос 6 состоит из следующих основных частей: электрического привода 6.1; неподвижного корпуса 6.2; вращающегося корпуса 6.3 с лопатками 6.4; отводящего жидкую фазу теплоносителя канала 6.5; отводящего паровую фазу теплоносителя канала 6.6; черпаковый насос 6 имеет один вход и два выхода;

- радиатор-конденсатор 5, где происходит превращение пара в жидкую фазу и отвод тепла в окружающее (космическое) пространство.

Работа предложенной СТР происходит следующим образом.

Подведенное к теплообменнику-испарителю 4 тепло передается циркулирующему теплоносителю, который при этом превращается в паровую фазу частично или практически полностью в зависимости от количества подведенного тепла.

Двухфазный теплоноситель далее поступает в черпаковый насос 6. В черпаковом насосе 6 двухфазный теплоноситель из его центральной части попадает на лопатки 6.4 вращающегося корпуса 6.3 и в результате воздействия центробежных сил теплоноситель разделяется на паровую фазу, которая сосредоточена в центральной части вращающегося корпуса 6.3, и жидкую фазу, которая сосредоточена в периферийной зоне вращающегося корпуса 6.3.

Далее пар из центральной части через специальный канал поступает к первому выходу, а жидкая фаза - ко второму выходу черпакового насоса 6: из первого выхода паровая фаза подается на вход радиатора-конденсатора 5, где происходит превращение его в жидкую фазу теплоносителя и отдача тепла стенкам радиатора-конденсатора 5 и далее отвод этого тепла в окружающее пространство. При дальнейшем движении жидкая фаза теплоносителя, вышедшая из радиатора-конденсатора 5, поступает в гидронасос 2 и далее смешивается с жидкой фазой теплоносителя, вышедшей из второго выхода черпакового насоса 6, и жидкий теплоноситель поступает в теплообменник-испаритель 4.

В результате выполнения СТР согласно предложенному авторами техническому решению на основе данных изготовления аналогов обеспечиваются, по сравнению с другими типами СТР, оптимальные (приемлемые) дополнительные массовые и энергетические затраты на СТР спутника при устранении вышеупомянутого существенного недостатка:

- масса черпакового насоса равна 2,1 кг;

- потребляемая электрическая мощность черпакового насоса (с насосным коэффициентом полезного действия не менее 0,2) не превышает 15 Вт (т.е. для обеспечения электрической мощности 15 Вт потребуется площадь солнечных батарей системы электропитания ≈0,10 м2, что эквивалентно дополнительной массе, затрачиваемой на СТР, менее 0,18 кг);

- объем теплоносителя во внутренней полости черпакового насоса относительно мал и равен 0,15 дм3;

- кинетические моменты центробежного гидронасоса и черпакового насоса, влияющие при их функционировании на работу системы ориентации и стабилизации, не превышают (2·0,0176=0,0352) Н·м·с (в насосах применяются унифицированные электродвигатели) - вышеуказанные величины кинетических моментов относительно малы и компенсируются соответствующим схемным расположением трактов СТР (через которые циркулирует жидкий аммиак) согласно патенту RU 2221733 [4] и дополнительная масса в системе ориентации и стабилизации на СТР не затрачивается.

Выполненная согласно предложенному авторами СТР исключает в условиях эксплуатации на теневом участке орбиты спутника при переходе с сеанса связи на дежурный режим случаи выхода температуры теплообменника-испарителя 4 за допустимые пределы (0-30)°С, т.е. тем самым повышается надежность нормального функционирования СТР на теневом участке орбиты спутника при переменных значениях теплоподвода к теплообменнику-испарителю и, следовательно, устраняется существенный недостаток известных технических решений с одновременным обеспечением оптимальных массовых и энергетических затрат на СТР спутника.

Похожие патенты RU2384491C2

название год авторы номер документа
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Голованов Юрий Матвеевич
RU2362712C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Голованов Юрий Матвеевич
RU2362711C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2012
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Головенкин Евгений Николаевич
  • Анкудинов Александр Владимирович
  • Акчурин Владимир Петрович
  • Князев Александр Григорьевич
  • Габов Алексей Сергеевич
RU2513325C1
СПОСОБ КОМПОНОВКИ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Близневский Александр Сергеевич
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Попов Василий Владимирович
  • Юровских Андрей Петрович
  • Синьковский Федор Константинович
  • Шилкин Олег Валентинович
  • Кувакин Константин Леонардович
  • Голованов Юрий Матвеевич
  • Колесников Анатолий Петрович
RU2369537C2
СИСТЕМА ТЕРМОСТАТИРОВАНИЯ ОБОРУДОВАНИЯ КОСМИЧЕСКОГО ОБЪЕКТА 2012
  • Цихоцкий Владислав Михайлович
  • Прохоров Юрий Максимович
  • Елчин Анатолий Петрович
  • Аульченков Александр Владимирович
  • Басов Андрей Александрович
RU2494933C1
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО СПУТНИКА 2006
  • Бартенев Владимир Афанасьевич
  • Акчурин Владимир Петрович
  • Голованов Юрий Матвеевич
  • Дмитриев Геннадий Валерьевич
  • Дюдин Александр Евгеньевич
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Двирный Валерий Васильевич
RU2311323C2
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО СПУТНИКА 2006
  • Бартенев Владимир Афанасьевич
  • Акчурин Владимир Петрович
  • Голованов Юрий Матвеевич
  • Дмитриев Геннадий Валерьевич
  • Дюдин Александр Евгеньевич
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
RU2311322C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Шилкин Олег Валентинович
  • Ноздрин Александр Юрьевич
RU2369536C2
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Кесельман Геннадий Давыдович
  • Близневский Александр Сергеевич
  • Халиманович Владимир Иванович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Томчук Альберт Владимирович
  • Туркенич Роман Петрович
  • Юровских Андрей Петрович
  • Шилкин Олег Валентинович
  • Голованов Юрий Матвеевич
  • Роскин Сергей Михайлович
  • Дмитриев Геннадий Валерьевич
  • Дюдин Александр Евгеньевич
RU2346862C2
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2008
  • Халиманович Владимир Иванович
  • Акчурин Владимир Петрович
  • Алексеев Николай Григорьевич
  • Воловиков Виталий Гавриилович
  • Загар Олег Вячеславович
  • Колесников Анатолий Петрович
  • Кривов Евгений Владимирович
  • Кульков Алексей Александрович
  • Сергеев Юрий Дмитриевич
  • Скороходов Даниил Игоревич
  • Убиенных Александр Вячеславович
  • Цивилев Иван Николаевич
  • Шилкин Олег Валентинович
  • Юртаев Евгений Владимирович
RU2374149C1

Иллюстрации к изобретению RU 2 384 491 C2

Реферат патента 2010 года СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к космической технике, в частности к системам терморегулирования приборов телекоммуникационного спутника. Система терморегулирования включает в себя контур с двухфазным теплоносителем. Контур содержит соединенные между собой линиями тракта аккумулятор, гидронасос, теплообменник-испаритель, радиатор-конденсатор и регулятор температуры пара в теплообменнике-испарителе. Жидкостная полость аккумулятора ограничена сильфоном, механически связанным с электроприводом, который, в свою очередь, связан с датчиком температуры, установленным в теплообменнике-испарителе. В качестве разделителя жидкой и паровой фаз теплоносителя использован установленный на входе в радиатор-конденсатор черпаковый насос. Его вход соединен с выходом теплообменника-испарителя. Паровой выход черпакового насоса, обеспечивающий подачу паровой фазы теплоносителя, подключен к входу радиатора-конденсатора, а второй выход, обеспечивающий подачу жидкой фазы теплоносителя, - к входу теплообменника-испарителя. Техническим результатом изобретения является повышение надежности функционирования системы терморегулирования, без увеличения ее массы, на теневом участке орбиты при снижении величины теплоподвода к теплообменнику-испарителю. 2 ил.

Формула изобретения RU 2 384 491 C2

Система терморегулирования космического аппарата, включающая в себя контур с двухфазным теплоносителем, содержащий соединенные между собой линиями тракта аккумулятор, жидкостная полость которого ограничена сильфоном, связанным механическим приводом с электроприводом, связанным в свою очередь с датчиком температуры, установленным в теплообменнике-испарителе, гидронасос, теплообменник-испаритель, радиатор-конденсатор и регулятор температуры пара в теплообменнике-испарителе, отличающаяся тем, что в контур в качестве разделителя жидкой и паровой фаз теплоносителя введен установленный на входе в радиатор-конденсатор черпаковый насос, вход которого соединен с выходом теплообменника-испарителя, при этом паровой выход черпакового насоса, обеспечивающий подачу паровой фазы теплоносителя, подключен к входу радиатора-конденсатора, а второй выход, обеспечивающий подачу жидкой фазы теплоносителя - к входу теплообменника-испарителя.

Документы, цитированные в отчете о поиске Патент 2010 года RU2384491C2

US 4603732 A, 05.08.1986
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО ОБЪЕКТА 2002
  • Ковзун Л.З.
  • Катунцев Н.П.
RU2230007C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2001
  • Акчурин В.П.
  • Бартенев В.А.
  • Головенкин Е.Н.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Кузнецов А.Ю.
  • Леканов А.В.
  • Никитин В.Н.
  • Попов В.В.
  • Синиченко М.И.
  • Талабуев Е.С.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Холодков И.В.
  • Шилкин О.В.
RU2209750C2
US 4880050 A, 14.11.1989
НИКОНОВ A.A., ГОРБЕНКО Г.А., БЛИНКОВ В.Н
Теплообменные контуры с двухфазным теплоносителем для систем терморегулирования космических аппаратов
ЦНТИ "Поиск"
Сер."Ракетно-космическая техника"
- М., 1991, с.47-48.

RU 2 384 491 C2

Авторы

Акчурин Владимир Петрович

Алексеев Николай Григорьевич

Загар Олег Вячеславович

Кривов Евгений Владимирович

Кульков Алексей Александрович

Сергеев Юрий Дмитриевич

Скороходов Даниил Игоревич

Убиенных Александр Вячеславович

Шилкин Олег Валентинович

Юртаев Евгений Владимирович

Даты

2010-03-20Публикация

2008-01-22Подача