СПОСОБ ИЗМЕРЕНИЙ ДЕБИТА ПРОДУКЦИИ СКВАЖИН Российский патент 2010 года по МПК E21B47/10 

Описание патента на изобретение RU2386030C1

Изобретение относится к измерениям и может быть использовано при оперативном учете дебитов продукции скважин.

Известен способ измерений дебита продукции скважин, реализованный в измерительных установках типа «АСМА», включающий разделение продукции скважины в сепарационной емкости, установленной на весоизмерительное устройство, на газ и жидкость, накопление жидкости в сепарационной емкости с одновременным отводом газа из сепарационной емкости через счетчик газа, определение времени накопления в сепарационной емкости жидкости от нижнего до верхнего фиксированных значений массы сепарационной емкости и объема газа, прошедшего через счетчик газа, за это же время, отключение сепарационной емкости от скважины, откачку жидкости из сепарационной емкости, измерения обводненности жидкости поточным влагомером нефти и расчет производительности по жидкости, нефти и газу, содержащихся в продукции скважины. В этом способе измерения дебита продукции скважин производятся циклично в автоматическом режиме. Единичный цикл измерений начинается с момента начала поступления продукции скважины в сепарационную емкость. В сепарационной емкости происходит разделение продукции скважины на составляющие ее фазы (газ и жидкость) при рабочих значениях термодинамических параметров процесса, накопление жидкости и вытеснение газа в измерительную линию. Система сбора и обработки метрологической информации измеряет время накопления в сепарационной емкости жидкости от нижнего до верхнего фиксированных значений массы сепарационной емкости, объем вытесненного из сепарационной емкости газа за это же время. По окончании перечисленных операций происходит отключение сепарационной емкости от скважины, при помощи насоса жидкость из емкости откачивается, в процессе откачки измеряется обводненность жидкости поточным влагомером нефти, производится расчет значения суточных дебитов нефти, газа и жидкости и единичный цикл измерений на этом завершается. [Установка массоизмерительная транспортабельная «АСМА-Т-03-400-300». Руководство по эксплуатации. 40200.00.00.00.00.000 РЭ].

Поскольку разделение продукции скважины на составляющие ее фазы (газ и жидкость) в рассмотренном способе происходит при рабочих значениях термодинамических параметров процесса, то накапливаемая в емкости жидкость содержит некоторое количество растворенного газа, который не учитывается при вычислениях суточного дебита газа. В этой связи недостатком указанного способа является высокая погрешность определения дебита газа из-за отсутствия учета количества растворенного в жидкости газа.

Другим недостатком рассмотренного способа является высокая погрешность измерений дебита нефти. Это связано с тем, что дебит нефти определяется исходя из обводненности жидкости, измеренной поточным влагомером нефти при откачке жидкости из сепарационной емкости, а присутствие в жидкости газа снижает метрологические характеристики поточных влагомеров нефти.

Техническим результатом от использования изобретения является уменьшение погрешности определения дебита газа за счет учета количества растворенного в жидкости газа и уменьшение погрешности определения дебита нефти за счет снижения погрешности измерений обводненности жидкости поточным влагомером нефти.

Это достигается тем, что в способе измерений дебита продукции скважин, включающем разделение продукции скважины в сепарационной емкости, установленной на весоизмерительное устройство, на газ и жидкость, накопление жидкости в сепарационной емкости с одновременным отводом газа из сепарационной емкости через счетчик газа, определение времени накопления в сепарационной емкости жидкости от нижнего до верхнего фиксированных значений массы сепарационной емкости и объема газа, прошедшего через счетчик газа, за это же время, отключение сепарационной емкости от скважины, откачку жидкости из сепарационной емкости, измерения обводненности жидкости поточным влагомером нефти и расчет производительности по жидкости, нефти и газу, содержащихся в продукции скважины, после отключения сепарационной емкости от скважины, канал отвода газа из сепарационной емкости закрывается и определяются масса накопленной в сепарационной емкости жидкости МЖ0, абсолютная температура Т0, абсолютное давление Р0 и объем V0 газа, находящегося в сепарационной емкости над поверхностью раздела фаз, жидкость из сепарационной емкости откачивается порциями, после откачки каждой i-ой порции жидкости определяются масса жидкости МЖi, оставшейся в сепарационной емкости, абсолютная температура Тi, абсолютное давление Pi и объем Vi газа, находящегося в сепарационной емкости над поверхностью раздела фаз, а дебит газа вычисляется после откачки n-порций жидкости с учетом количества растворенного в накопленной жидкости газа, масса которого определяется путем экстраполяции до значений абсолютного давления 101325 Па и абсолютной температуры 293,15 К кривой дегазации, построенной в соответствии с выражением:

,

где - масса растворенного газа, способного выделиться из жидкости массой МЖ0 при абсолютном давлении Pi и абсолютной температуре Ti, кг;

i - порядковый номер откачанной порции жидкости, i∈[l; n];

n - количество откачиваемых порций жидкости;

Рk и Pk-1 - значения абсолютных давлений газа, соответственно, после откачивания k-ой и k-1-ой порции жидкости, Па;

Tk и Тk-1 - значения абсолютных температур газа, соответственно, после откачивания k-ой и k-1-ой порции жидкости, К;

Vk и Vk-1 - значения объемов, занимаемых газом в сепарационной емкости над поверхностью раздела фаз соответственно после откачивания k-ой и k-1-ой порции жидкости, м3;

R=8,314 - универсальная газовая постоянная, Дж/(моль·К);

µ - молярная масса газа, кг/моль;

МЖ0 - масса жидкости, накопленной в сепарационной емкости для дегазации, кг;

МЖk - масса жидкости, оставшаяся в сепарационной емкости после откачивания k-ой порции жидкости, кг.

Кроме того, после откачки каждой порции жидкости организуется замкнутая циркуляция оставшейся в сепарационной емкости жидкости через сепарационную емкость.

Кроме того, измерения обводненности жидкости производятся в процессе ее замкнутой циркуляции через сепарационную емкость.

Кроме того, замкнутая циркуляция жидкости через сепарационную емкость осуществляется до стабилизации отношения абсолютного давления к абсолютной температуре газа в сепарационной емкости.

На чертеже представлена схема устройства, позволяющего осуществить заявляемый способ измерений дебита скважин.

Устройство состоит из входного трубопровода 1 с трехходовым краном 2, соединенным с байпасным трубопроводом 3 и подающим трубопроводом 4 сепарационной емкости 5, оснащенной уровнемером 6, весоизмерительным устройством 7, датчиком давления газа 8 и датчиком температуры газа 9, измерительной линии газа 10, содержащей счетчик газа 11 и запорный кран 12, измерительной линии жидкости 13, содержащей насос 14, поточный влагомер нефти 15 и трехходовой кран 16, циркуляционного крана 17, обратного клапана 18 и выходного трубопровода 19.

Объем сепарационной емкости 5 предварительно откалиброван.

Трехходовой кран 2 может находиться в положении, при котором соединяются его выходы «а» и «б» (положение «а-б»), и в положении, при котором соединяются его выходы «а» и «в» (положение «а-в»). Трехходовой кран 16 может находиться в положении, при котором соединяются его выходы «г» и «д» (положение «г-д»), и в положении, при котором соединяются его выходы «г» и «е» (положение «г-е»).

Режим измерений реализован следующим образом. В начальный момент циркуляционный кран 17 закрыт, запорный кран 12 закрыт, трехходовой кран 2 находится в положении «а-в», а трехходовой кран 16 - в положении «г-е». Продукция скважины (на чертеже не указана) направляется по входному трубопроводу 1 через трехходовой кран 2, байпасный трубопровод 3, выходной трубопровод 19 в нефтесборный трубопровод (на чертеже не показан). Обратный клапан 18 предотвращает поступление продукции скважины в измерительные линии 10 и 13. При этом весоизмерительным устройством 7 измеряется масса порожней емкости МПЕ.

Единичный цикл измерений начинается с момента начала поступления продукции скважины в сепарационную емкость. Для этого трехходовой кран 2 переводится в положение «а-б», запорный кран 12 открывается, и продукция скважины по подающему трубопроводу 4 поступает в сепарационную емкость 5. В сепарационной емкости 5 происходит разделение продукции скважины на составляющие ее фазы (газ и жидкость). Выделяющийся в процессе сепарации газ из сепарационной емкости 5 отводится по измерительной линии газа 10, через счетчик газа 11, запорный кран 12, обратный клапан 18 в выходной трубопровод 19, а жидкость накапливается в сепарационной емкости 5. При этом система сбора и обработки метрологической информации (на чертеже не показана) по показаниям весоизмерительного устройства 7 измеряет время заполнения сепарационной емкости 5 жидкостью от нижнего до верхнего фиксированного значений массы сепарационной емкости 5, а счетчик газа 11 - количество проходящего через него свободного газа за это же время.

После заполнения сепарационной емкости 5 жидкостью по сигналу весоизмерительного устройства 7 трехходовой кран 2 переводится в положение «а-в», а запорный кран 12 закрывается. После этого измеряются масса сепарационной емкости 5 с накопленной в ней жидкостью МЕ0 весоизмерительным устройством 7, давление газа датчиком давления газа 8 и температура газа датчиком температуры газа 9, по показаниям уровнемера 6 определяется объем V0 газа, находящегося в сепарационной емкости 5 над поверхностью раздела фаз, и в систему сбора и обработки метрологической информации (на чертеже не показана) записываются значения объема V0 газа, абсолютного давления газа Р0, абсолютной температуры газа Т0 и массы накопленной жидкости МЖ0, рассчитанной по выражению:

где МЖ0 - масса накопленной жидкости, кг;

МЕ0 - масса сепарационной емкости с накопленной жидкостью, кг;

МПЕ - масса порожней сепарационной емкости, кг.

Затем трехходовой кран 16 переводится в положение «г-д», и насосом 14 из сепарационной емкости 5 откачивается порция жидкости. Масса откачанной насосом 14 порции жидкости контролируется весоизмерительным устройством 7. В результате откачки порции жидкости увеличивается объем, занимаемый газом в сепарационной емкости, давление газа в емкости 5 над поверхностью раздела фаз снижается, и начинается процесс выделения растворенного газа из жидкости, а, следовательно, будет увеличиваться масса газа, находящегося в сепарационной емкости 5 над уровнем раздела фаз. Процесс выделения растворенного газа будет сопровождаться увеличением давления газа в сепарационной емкости 5. Интенсификация выделения газа из жидкости обеспечивается циркуляцией жидкости через сепарационную емкость 5. Для этого трехходовой кран 16 переводится в положение «г-е», циркуляционный кран 17 открывается, и жидкость насосом 14 из сепарационной емкости 5 по измерительной линии жидкости 13, через поточный влагомер нефти 15, трехходовой кран 16, циркуляционный кран 17, подающий трубопровод 4 многократно прокачивается через сепарационную емкость 5. В процессе циркуляции жидкости производятся измерения ее обводненности поточным влагомером нефти 15. Многократное прокачивание через поточный влагомер нефти 15 жидкости с удалением из нее в сепарационной емкости высвобождающегося газа обеспечивает более точные измерения обводненности жидкости. Циркуляцию прекращают, когда стабилизируется отношение 1 и Т1 - соответственно абсолютное давление и абсолютная температура газа в сепарационной емкости 5 после откачки первой порции жидкости), вычисленное по результатам измерений датчиками 8 и 9.

После прекращения циркуляции жидкости определяется масса МЖ1 жидкости, оставшейся в сепарационной емкости после откачки первой порции жидкости, давление и температура газа в сепарационной емкости 5 при помощи датчика давления газа 8 и датчика температуры газа 9, по показаниям уровнемера 6 определяется объем V1 газа, находящегося над поверхностью раздела фаз в сепарационной емкости 5 после откачки первой порции жидкости, и в систему сбора и обработки метрологической информации (на чертеже не показана) записываются значения объема V1 газа, абсолютного давления газа Р1, абсолютной температуры газа T1 и массы жидкости МЖ1, рассчитанной по выражению:

где МЖ1 - масса жидкости, оставшейся в сепарационной емкости после откачки первой порции, кг;

МЕ1 - масса сепарационной емкости с жидкостью, оставшейся в ней после откачки первой порции, кг;

МПЕ - масса порожней сепарационной емкости, кг.

Таких последовательных откачиваний порций жидкости в общем случае может быть n. Дебит газа вычисляется после откачки n-порций жидкости с учетом количества растворенного в накопленной жидкости газа. Масса растворенного в накопленной жидкости газа определяется путем экстраполяции до значений абсолютного давления 101325 Па и абсолютной температуры 293,15 К кривой дегазации, построенной в соответствии с выражением:

,

где - масса растворенного газа, способного выделиться из жидкости массой МЖ0, при абсолютном давлении Pi и абсолютной температуре Ti, кг;

i - порядковый номер откачанной порции жидкости, i∈[l; n];

n - количество откачиваемых порций жидкости;

Рk и Pk-1 - значения абсолютных давлений газа соответственно после откачивания k-той и k-1-ой порции жидкости, Па;

Tk и Тk-1 - значения абсолютных температур газа соответственно после откачивания k-той и k-1-ой порции жидкости, К;

Vk и Vk-1 - значения объемов, занимаемых газом в сепарационной емкости над поверхностью раздела фаз соответственно после откачивания k-ой и k-1-ой порции жидкости, м3;

R=8,314 - универсальная газовая постоянная, Дж/(моль·К);

µ - молярная масса газа, кг/моль;

МЖ0 - масса жидкости, накопленной в сепарационной емкости для дегазации, кг;

МЖk - масса жидкости, оставшаяся в сепарационной емкости после откачивания k-ой порции жидкости, кг.

Дебит жидкости вычисляется на основе измеренного системой сбора и обработки метрологической информации значения времени накопления в сепарационной емкости 5 жидкости от нижнего до верхнего фиксированных значений массы сепарационной емкости, а дебит нефти - на основе рассчитанного значения дебита жидкости и измеренного поточным влагомером нефти обводненности жидкости.

После завершения описанных операций трехходовой кран 16 переводится в положение «г-д», циркуляционный кран 17 закрывается, включается насос 14 и оставшаяся жидкость выкачивается из сепарационной емкости 5 через обратный клапан 18, выходной трубопровод 19 в нефтесборный трубопровод (на чертеже не показан). На этом единичный цикл измерений завершается.

Использование предлагаемого способа измерений дебита продукции скважин обеспечивает уменьшение погрешности определения дебита газа за счет учета количества растворенного в жидкости газа и уменьшение погрешности определения дебита нефти за счет снижения погрешности измерений обводненности жидкости поточным влагомером нефти.

Похожие патенты RU2386030C1

название год авторы номер документа
АДАПТИВНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО (СВОБОДНОГО) ГАЗОСОДЕРЖАНИЯ НА ГРУППОВЫХ ЗАМЕРНЫХ УСТАНОВКАХ 2008
  • Абрамов Генрих Саакович
  • Барычев Алексей Васильевич
  • Надеин Владимир Александрович
RU2386811C1
СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА ПРОДУКЦИИ НЕФТЯНЫХ СКВАЖИН 2017
  • Немиров Михаил Семенович
  • Ибрагимов Рамиль Ринатович
  • Алексеев Сергей Викторович
  • Крайнов Михаил Викторович
  • Гордеев Егор Юрьевич
  • Саттаров Айдар Мусавирович
  • Зарецкий Леонид Борисович
RU2647539C1
СПОСОБ ИЗМЕРЕНИЯ ПРОДУКЦИИ НЕФТЯНОЙ СКВАЖИНЫ 2017
  • Валеев Мурад Давлетович
  • Багаутдинов Марсель Азатович
  • Ахметгалиев Ринат Закирович
  • Житков Александр Сергеевич
  • Нуртдинов Марат Ринатович
RU2658699C1
Способ измерения продукции скважины с малым содержанием газа 2022
  • Исаев Анатолий Андреевич
  • Тахаутдинов Рустем Шафагатович
  • Малыхин Владимир Иванович
  • Шарифуллин Алмаз Амирзянович
  • Валеев Марат Давлетович
RU2779520C1
СПОСОБ ИЗМЕРЕНИЯ ПРОДУКЦИИ НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИН 2014
  • Борисов Александр Анатольевич
  • Цой Валентин Евгеньевич
RU2578065C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЙ ДЕБИТА ПРОДУКЦИИ НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИН 2014
  • Демакин Юрий Павлович
  • Кравцов Михаил Владимирович
  • Мусалеев Радик Асымович
  • Янский Юлиан Валентинтович
RU2565614C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТОВ НЕФТИ, ПОПУТНОГО ГАЗА И ВОДЫ 2012
  • Валеев Марат Давлетович
  • Немков Алексей Николаевич
RU2504653C1
СПОСОБ ИДЕНТИФИКАЦИИ СКВАЖИНЫ С ИЗМЕНЕННОЙ ОБЪЕМНОЙ ОБВОДНЕННОСТЬЮ КУСТА НЕФТЯНЫХ СКВАЖИН 2013
  • Абрамов Генрих Саакович
RU2531500C1
СПОСОБ ИЗМЕРЕНИЯ ГАЗОВОГО ФАКТОРА НЕФТИ 2022
  • Исаев Анатолий Андреевич
  • Тахаутдинов Рустем Шафагатович
  • Малыхин Владимир Иванович
  • Шарифуллин Алмаз Амирзянович
  • Валеев Марат Давлетович
RU2779284C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ В НЕФТЕВОДОГАЗОВОЙ СМЕСИ 2006
  • Слепян Макс Аронович
RU2356040C2

Иллюстрации к изобретению RU 2 386 030 C1

Реферат патента 2010 года СПОСОБ ИЗМЕРЕНИЙ ДЕБИТА ПРОДУКЦИИ СКВАЖИН

Изобретение относится к измерениям и может быть использовано при оперативном учете дебитов продукции скважин. По способу измерений дебита продукции скважин разделяют продукцию скважины в сепарационной емкости, установленной на весоизмерительное устройство, на газ и жидкость. Накапливают жидкость в сепарационной емкости с одновременным отводом газа из сепарационной емкости через счетчик газа. Определяют время накопления в сепарационной емкости жидкости и объем газа. Отключают сепарационную емкость от скважины. Измеряют обводненность жидкости поточным влагомером. После отключения сепарационной емкости от скважины канал отвода газа из сепарационной емкости закрывается и определяются масса накопленной в сепарационной емкости жидкости МЖ0, абсолютная температура Т0, абсолютное давление Р0 и объем V0 газа, находящегося в сепарационной емкости над поверхностью раздела фаз. После откачки каждой i-ой порции жидкости определяются масса жидкости МЖi, оставшейся в сепарационной емкости, абсолютная температура Тi, абсолютное давление Pi и объем Vi газа, находящегося в сепарационной емкости над поверхностью раздела фаз. Дебит газа вычисляется после откачки n-порций жидкости с учетом количества растворенного в накопленной жидкости газа, масса которого определяется путем экстраполяции до значений абсолютного давления 101325 Па и абсолютной температуры 293,15 К кривой дегазации, построенной в соответствии с приведенным математическим выражением. Техническим результатом является уменьшение погрешности определения дебита газа за счет учета количества растворенного в жидкости газа и уменьшение погрешности определения дебита нефти за счет снижения погрешности измерений обводненности жидкости. 3 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 386 030 C1

1. Способ измерений дебита продукции скважин, включающий разделение продукции скважины в сепарационной емкости, установленной на весоизмерительное устройство, на газ и жидкость, накопление жидкости в сепарационной емкости с одновременным отводом газа из сепарационной емкости через счетчик газа, определение времени накопления в сепарационной емкости жидкости от нижнего до верхнего фиксированных значений массы сепарационной емкости и объема газа, прошедшего через счетчик газа, за это же время, отключение сепарационной емкости от скважины, откачку жидкости из сепарационной емкости, измерения обводненности жидкости поточным влагомером нефти и расчет производительности по жидкости, нефти и газу, содержащихся в продукции скважины, отличающийся тем, что после отключения сепарационной емкости от скважины канал отвода газа из сепарационной емкости закрывается и определяются масса накопленной в сепарационной емкости жидкости МЖ0, абсолютная температура Т0, абсолютное давление P0 и объем V0 газа, находящегося в сепарационной емкости над поверхностью раздела фаз, жидкость из сепарационной емкости откачивается порциями, после откачки каждой i-й порции жидкости определяются масса жидкости МЖi, оставшейся в сепарационной емкости, абсолютная температура Тi, абсолютное давление Рi и объем Vi газа, находящегося в сепарационной емкости над поверхностью раздела фаз, а дебит газа вычисляется после откачки n порций жидкости с учетом количества растворенного в накопленной жидкости газа, масса которого определяется путем экстраполяции до значений абсолютного давления 101325 Па и абсолютной температуры 293,15 К кривой дегазации, построенной в соответствии с выражением

где - масса растворенного газа, способного выделиться из жидкости массой МЖ0, при абсолютном давлении Рi и абсолютной температуре Тi, кг;
i - порядковый номер откачанной порции жидкости, i∈[1; n];
n - количество откачиваемых порций жидкости;
Pk и Pk-1 - значения абсолютных давлений газа соответственно после откачивания k-й и (k-1)-й порций жидкости, Па;
Tk и Tk-1 - значения абсолютных температур газа соответственно после откачивания k-й и (k-1)-й порций жидкости, К;
Vk и Vk-1 - значения объемов, занимаемых газом в сепарационной емкости над поверхностью раздела фаз, соответственно после откачивания k-й и (k-1)-й порций жидкости, м3;
R=8,314 - универсальная газовая постоянная, Дж/(моль·К);
µ - молярная масса газа, кг/моль;
МЖ0 - масса жидкости, накопленной в сепарационной емкости для дегазации, кг;
MЖk - масса жидкости, оставшаяся в сепарационной емкости после откачивания k-й порции жидкости, кг.

2. Способ по п.1, отличающийся тем, что после откачки каждой порции жидкости организуется замкнутая циркуляция оставшейся в сепарационной емкости жидкости через сепарационную емкость.

3. Способ по п.1, отличающийся тем, что измерения обводненности жидкости производятся в процессе ее замкнутой циркуляции через сепарационную емкость.

4. Способ по п.1, отличающийся тем, что замкнутая циркуляция жидкости через сепарационную емкость осуществляется до стабилизации отношения абсолютного давления к абсолютной температуре газа в сепарационной емкости.

Документы, цитированные в отчете о поиске Патент 2010 года RU2386030C1

СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ДЕБИТА НЕФТЯНЫХ СКВАЖИН НА ГРУППОВЫХ УСТАНОВКАХ 2006
  • Васильев Александр Алексеевич
  • Краузе Александр Сергеевич
RU2328597C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗА В ГАЗОЖИДКОСТНЫХ СМЕСЯХ 2003
  • Винштейн И.И.
  • Губарев А.К.
  • Курилов Ю.А.
  • Эльзессер В.А.
  • Недосеков Н.С.
RU2244825C1
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОСТИ В ГАЗОЖИДКОСТНЫХ СМЕСЯХ 2003
  • Винштейн И.И.
  • Губарев А.К.
RU2244122C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН 2004
  • Шапченко М.М.
  • Зинченко И.А.
  • Кирсанов С.А.
  • Варламов В.П.
  • Жигалин В.А.
RU2263781C1
УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПРОДУКЦИИ СКВАЖИН 1992
  • Хазиев Н.Н.
  • Газизов М.Г.
  • Зайнашев Р.А.
  • Хазиев В.Н.
  • Ахмадишин Р.З.
RU2057922C1
СПОСОБ ЗАМЕРА ДЕБИТА ПОПУТНОГО ГАЗА В ПРОДУКЦИИ НЕФТЯНОЙ СКВАЖИНЫ НА ГРУППОВЫХ ЗАМЕРНЫХУСТАНОВКАХ 0
  • Ш. М. Смотрицкий, А. Н. Грек, И. Лазовский, Б. П. Панфилов
SU276851A1
Способ измерения дебита нефтяных скважин 1984
  • Сибагатуллин Насим Миргазиянович
  • Сибагатуллин Зауфит Миргазиянович
SU1310514A1
Устройство для измерения дебита нефтяных скважин 1988
  • Скворцов Анатолий Петрович
  • Чуринов Михаил Иванович
  • Рузанов Владимир Алексеевич
SU1553661A1
US 3834227 А, 10.09.1974
US 5654502 A (MICRO MOTION INC), 05.08.1997
АБРАМОВ Г.С
и др
Автоматизированные измерительные установки

RU 2 386 030 C1

Авторы

Гафуров Марат Динарович

Даты

2010-04-10Публикация

2008-11-21Подача