Изобретение относится к нефтегазодобывающей промышленности, в частности к герметизирующим композициям для изоляционных работ в скважине, которые могут быть использованы для изоляции межколонного и заколонного пространства, повторной герметизации резьбовых соединений обсадных колонн при эксплуатации нефтяных и газовых скважин с высоким содержанием сероводорода.
Анализ уровня техники показал следующее:
- известен полимерный состав, который может быть использован для временной изоляции межтрубного пространства скважины, рецептура которого имеет следующее соотношение ингредиентов, мас.%:
(см. а.с. СССР №1186785 от 23.11.1983 по кл. E21B 33/138, опубл. в Бюл. №38, 1985).
Недостатком указанного полимерного состава является недостаточная эффективность изоляционных работ. Это обусловлено следующими причинами: при указанном содержании ингредиентов данный состав обладает высокими показателями вязкости - 2150-2630 сП (см. табл. описания). Высокая вязкость затруднит выполнение работ, а именно процесс его закачивания. При закачивании не произойдет проникновение состава на достаточную глубину в зоне негерметичности, что в свою очередь может быть причиной загазованности околоскважинного пространства. Согласно описанию отвержденный состав представляет собой эластичную массу, достаточно долго не разрушающуюся при t=45-120°C. Однако при этом значения предельного напряжения сдвига (слива) характеризуют состав как высоковязкую жидкость. Поэтому данный состав не может с высокой эффективностью применяться для изоляции межколонного, заколонного пространства, повторной герметизации резьбовых соединений обсадных колонн. Температура кипения используемого в рецептуре дибутилфталата 340°C, что не позволяет его молекулам испаряться, тем самым способствуя выделению полимера - смолы ПВХ в твердом виде. В связи с этим прочностные свойства у состава низкие. Данный состав обладает гидрофобными свойствами, что обуславливает его низкую адгезию к металлу труб, а значит неспособность защитить поверхность в условиях сероводородной агрессии;
- в качестве прототипа взята герметизирующая композиция для изоляционных работ в скважине, рецептура которой имеет следующее соотношение ингредиентов, мас.%:
(см. патент РФ №2183725 от 08.08.2000 г. по кл. E21B 33/138, опубл. в Бюл.№17, 2002).
Смесь сложных эфиров с кальциевыми солями алкиларилсульфокислот используют в соотношении 1:30.
Недостатком герметизирующей композиции является недостаточная эффективность изоляционных работ. Это обусловлено следующими причинами: данная композиция представляет собой резиноподобную массу, что может привести к затруднениям при доставке композиции в зону негерметичности. Высокие вязкостные свойства не обеспечат проникновение ее на необходимую глубину, например давление при штуцерировании 4-85 МПа (характеризует очень вязкий состав). Увеличению вязкости способствует и наличие твердого наполнителя, используемого в композиции в количестве 5,0-15,0 мас.%. Вышеуказанное не обеспечит эффективную герметизацию меж- или заколонного пространства, повторную герметизацию резьбовых соединений обсадных колонн.
Реакция твердых наполнителей - карбоната или гидроксида кальция с сероводородом в среде эластомера отличается от реакции в воде тем, что известь находится в нерастворенном виде, а сероводород реагирует в молекулярном виде. Реакции, приведенные в описании, обратимы, т.е. возможно выделение сероводорода. В интервале температур 20-110°C, т.е. в скважинных условиях, происходит интенсивное снижение скорости реакции взаимодействия гидроксида кальция с сероводородом (см. Химические методы предупреждения и борьбы с сероводородной агрессией при строительстве и ремонте скважин. Обзорная информация. Сер. «Борьба с коррозией и защита окружающей среды», вып.8(70), М.: ВНИИОЭНГ, 1987, с.16-17). Хотя при 20°C скорость реакции сравнительно велика и реакция гидроксида кальция с сероводородом в этих условиях практически необратима, скорость реакции невелика из-за гетерогенного ее характера. Поэтому в дисперсии гидроксида кальция остается много непрореагировавшего сероводорода.
Технический результат, который может быть получен при реализации предлагаемого изобретения, сводится к следующему: повышается эффективность изоляционных работ в скважинах за счет использования герметизирующей композиции с технологическими свойствами, улучшенными путем:
- снижения вязкостных свойств и длительного времени кристаллизации, обеспечивающими ее большее проникновение в зону негерметичности;
- улучшения пластифицирующих свойств;
- повышения стойкости к сероводородной агрессии.
Технический результат достигается известной герметизирующей композицией для изоляционных работ в скважине, включающей канифольсодержащий ингредиент и пластификатор, которая дополнительно содержит ацетон, в качестве канифольсодержащего ингредиента - канифоль сосновую, а в качестве пластификатора - масло касторовое при следующем соотношении ингредиентов, мас.%:
Заявляемая герметизирующая композиция соответствует условию «новизна».
Для приготовления герметизирующей композиции используют канифоль сосновую по ГОСТ 19113-84, масло касторовое по ГОСТ 6757-96, ацетон по ГОСТ 2768-84.
Совместное применение в рецептуре предлагаемой герметизирующей композиции ингредиентов в указанном содержании обеспечивает эффективность изоляционных работ в скважине.
Канифоль сосновая представляет собой хрупкий материал. Основную часть канифоли сосновой составляет абиетиновая кислота (диметилизопропилдекагидрофенантренкарбоновая кислота) брутто формула - C20H30O2. Молекулярная масса абиетиновой кислоты - 302. Наличие в молекуле кислоты трех углеводородных циклов и четырех метильных групп (-CH3) придает ей гидрофобные свойства. Канифоль сосновая практически нерастворима в воде, растворима в полярных органических растворителях (спирты, простые эфиры и т.д.), имеет температуру плавления 100-214°C. Канифоль сосновая хорошо растворима в ацетоне. Ацетон является летучим растворителем, размер молекулы ацетона много меньше диаметра капилляров и пор в цементном камне. Молекулы ацетона могут удаляться через эту пористую среду за счет адсорбции их цементным камнем. Молекулы ацетона, имея лишь одну водородную связь (CH3)2C=O…H2O, могут ее использовать либо на адсорбцию стенкой цементного камня или горной породы, либо на формирование бимолекул и с трудом образуют агрегаты, связанные со стенками каналов. Это позволяет молекулам ацетона легко проникать внутрь цементного камня, породы или резьбового соединения и смачивать их доступную поверхность. Раствор канифоли сосновой является концентрированным, близким к насыщению, удаление ацетона также приводит к увеличению концентрации канифоли в растворе. Абиетиновая кислота адсорбируется на поверхности пор (хемосорбция), за счет процесса адсорбции образуются зародыши кристаллической фазы абиетиновой кислоты. Рост зародышей приводит к росту пластинчатых кристаллов. Последнее обеспечивает композиции длительное время кристаллизации. Кристаллическая масса закупоривает вначале мелкие поры и капилляры, а затем и зону негерметичности. Это обусловлено тем, что отношение диаметра каналов зоны негерметичности к диаметру капилляров составляет величину порядка сотен и тысяч. Другим фактором, вызывающим выпадение кольматирующих кристаллов канифоли сосновой, является наличие воды. Вода в адсорбированном виде всегда присутствует в цементном камне. Ацетон является гигроскопичным веществом, т.е. легко поглощает влагу, которая оказывает высаливающее действие на канифоль. Использование в качестве пластификатора масла касторового способствует уменьшению хрупкости канифоли сосновой. Это обусловлено следующим: масло касторовое адсорбируется на гранях растущих кристаллов канифоли, рост кристаллов прерывается, образуются новые зародыши кристаллической фазы абиетиновой кислоты. Наличие большого количества небольших по размерам кристаллов абиетиновой кислоты и масляной составляющей между кристаллами способствует повышению пластичности поликристаллической смеси, что способствует повышению эффективности изоляционных работ. В итоге образуется однородная герметизирующая композиция с необходимыми низкими вязкостными свойствами, обеспечивающими ее глубокое проникновение в зону негерметичности.
В настоящее время применяются следующие способы защиты металлической поверхности от сероводородной агрессии:
- применение низколегированных сталей с повышенной стойкостью к сероводороду, снижение величины рабочих напряжений, термическая обработка, прибавка к расчетной толщине стенки для компенсирования потери вследствие общей коррозии;
- нанесение защитных покрытий, введение ингибиторов;
- термическая обработка оборудования, нейтрализация среды.
Для защиты как металлической поверхности, так и поверхности цементного камня в скважинных условиях наиболее экономически выгодным является нанесение защитных покрытий.
Защитное действие канифоли сосновой на поверхности металла или цементного камня обусловлено процессом адсорбции. В начальный момент происходит хемосорбция молекул абиетиновой кислоты на поверхности металла или цементного камня за счет образования пленки резинатов железа или кальция. В дальнейшем протекает физическая адсорбция канифоли, при этом происходит образование толстых защитных пленок. Поверхность металла, покрытая продуктом сероводородной коррозии - сульфидом железа, в условиях избирательного смачивания является гидрофильной, наличие ацетона придает композиции высокую смачивающую способность. Вышесказанное позволяет использовать предлагаемую герметизирующую композицию для проведения изоляционных работ, обладающую повышенной стойкостью в условиях сероводородной агрессии.
Содержание в составе герметизирующей композиции канифоли сосновой менее 20 мас.%, масла касторового менее 0,5 мас.% нецелесообразно, так как не происходит образования необходимого количества кольматирующих кристаллов канифоли, что не обеспечивает эффективность изоляционных работ.
Содержание в составе герметизирующей композиции канифоли более 40 мас.%, масла касторового более 1,0 мас.% нецелесообразно, так как улучшения технологических свойств не происходит.
Таким образом, согласно вышесказанному предлагаемая совокупность существенных признаков обеспечивает достижение заявляемого технического результата.
Не выявлены по имеющимся источникам известности технические решения, имеющие признаки, совпадающие с отличительными признаками предлагаемого изобретения по заявленному техническому результату.
Заявляемая герметизирующая композиция соответствует условию «изобретательский уровень».
Более подробно сущность заявляемого изобретения описывается следующими примерами
Пример (промысловый).
Проводят работы по ликвидации газопроявлений в межколонном пространстве между эксплуатационной и техническими колоннами скважины №180 Песчано-Уметского УПХГ.
Фонтанная арматура АФК 3 - 65×210.
Колонная головка ОКК-1 - 210 - 168×245.
Пластовое давление 11,6 МПа.
Давление в межколонном пространстве Pмкп68×245=1,36 МПа.
Причиной возникновения межколонных газопроявлений является негерметичность цементного кольца между эксплуатационной и технической колоннами. Проведение изоляционных работ предусматривает заполнение газопроводящих каналов в межколонном пространстве герметизирующей композицией. Основные параметры, характеризующие межколонное пространство скважины (дебит постоянного притока газа - qПП и пустотный его объем - VМКП) устанавливают на стадии выпуска межколонного флюида. Выпуск флюида проводится до полного прекращения его выхода или установления постоянного дебита. На основе результатов проведенных газодинамических исследований определяют общую емкость флюидопроводящих каналов в межколонном пространстве по формуле
,
где VМКП - пустотный объем межколонного пространства, м3;
VГ - объем выпущенного газа, м3;
ρ1 - плотность газа в месте установки газового счетчика, кг/м3;
qПП- дебит постоянного притока газа, м3/ч;
ρ2 - средняя плотность газа в межколонном пространстве, кг/м3;
t - общее время выпуска газа, ч.
.
Готовят 0,1 м3 герметизирующей композиции при соотношении ингредиентов, мас.%:
В емкость объемом 0,2 м3 заливают 79,2 л (69,5 мас.%) ацетона. Небольшими порциями, тщательно перемешивая, добавляют 27 кг (30 мас.%) канифоли сосновой. После полного растворения канифоли сосновой, тщательно перемешивая, добавляют 0,5 л (0,5 мас.%) масла касторового.
Порядок проведения работ
1. Стравливают газ из межколонного пространства 168×245 мм.
2. Монтируют нагнетательную линию от агрегата ЦА-320 на межколонное пространство скважины 168×245 мм. Опрессовывают нагнетательную линию на 5,0 МПа.
3. Работой агрегата ЦА-320 закачивают в межколонное пространство герметизирующую композицию в объеме 0,1 м3.
4. Монтируют нагнетательную линию от компрессора СДА 101/10 в межколонное пространство 168×245 мм и проводят закачку газа (азота) до 4,0 МПа. Закрывают затрубное пространство и оставляют на 48 ч на ожидание затвердевания композиции. Демонтируют нагнетательную линию.
Пример (промысловый).
Проводят работы по повторной герметизации резьбовых соединений эксплуатационной колонны на скважине №142 Песчано-Уметского УПХГ.
Пластовое давление Pпл=11,57 МПа.
Давление в межколонном пространстве Pмкп168×245=0,7 МПа (по промысловым данным на 03.09.2008 г.)
Скважина №142 Песчано-Уметского УПХГ эксплуатационного фонда исследовалась комплексом ГИС - техконтроль 06.03.2007 г. По результатам проведенных исследований в скважине установлено следующее:
1. По данным термометрии отмечается место негерметичности резьбового соединения эксплуатационной колонны на глубине 38,5 м.
2. По данным акустической цементометрии изменение волновой картины до и после прокачки газа в межколонное пространство свидетельствует о движении газа по заколонному пространству.
3. Голова цементного моста находится на глубине 41 м.
Объем герметизирующей композиции для проведения работ V определяют по формуле
,
где h - изолируемый интервал эксплуатационной колонны, м (с учетом коэффициента запаса принимается равным 4,5 м).
V=0,785·0,1682·4,5=0,1 м3.
Готовят 0,1 м3 герметизирующей композиции при соотношении ингредиентов, мас.%:
В мерник цементировочного агрегата ЦА-320 заливают 67,2 л (59 мас.%) ацетона. Небольшими порциями, тщательно перемешивая, добавляют в ацетон 36 кг (40 мас.%) канифоли сосновой. После полного растворения канифоли сосновой, тщательно перемешивая, добавляют 1,0 л (1,0 мас.%) масла касторового.
Порядок проведения работ
1. Свободным наливом на установленный на глубине 41 м подвесной цементный мост (НКТ подняты) заливают 0,1 м3 герметизирующей композиции.
2. Обвязывают пространство скважины с компрессором, с помощью которого создали давление 9,5 МПа.
3. Скважину оставляют под давлением на ожидание затвердевания композиции. Через 72 часа стравливают давление в трубном пространстве.
4. Разбуривают цементный мост.
После проведения изоляционных работ давление в межколонном пространстве Pмкд168×245=0. Следовательно, использование герметизирующей композиции позволило ликвидировать негерметичность резьбовых соединений.
Пример 1 (лабораторный).
Для приготовления 1000 г герметизирующей композиции в 1006 мл ацетона (что составляет 79,5 мас.%) плотностью 0,79 г/см3 растворяют 200 г канифоли сосновой (что составляет 20 мас.%). Тщательно перемешают и добавляют 5,4 мл масла касторового (что составляет 0,5 мас.%) плотностью 0,9166 г/см3. Определяют технологические свойства герметизирующей композиции: кинематическая вязкость τ=1,12 сСт, время кристаллизации t=180 мин, проницаемость по газу до обработки К=7,0 мкм2·10-3, после обработки K1=0,17 мкм2·10-3, коэффициент герметизации Kг=97,6%, коэффициент стойкости к сероводороду через 90 суток .
Пример 2.
Готовят 1000 г герметизирующей композиции, г/мас.%:
Проводят все операции, как в примере 1.
Герметизирующая композиция имеет следующие технологические свойства: τ=1,63 сСт, t=150 мин, , K=6,9 мкм2·10-3, K1 - 0 мкм2·10-3, Kг=100%.
Пример 3.
Готовят 1000 г герметизирующей композиции, г/мас.%:
Проводят все операции, как в примере 1.
Герметизирующая композиция имеет следующие технологические свойства: τ=1,47 Ст, t=168 мин, , K=3,8 мкм2·10-3, K1 - 0 мкм2·10-3, K1=100%.
Таким образом, заявляемое техническое решение соответствует условию «новизны, изобретательского уровня, промышленной применимости», то есть является патентоспособным.
название | год | авторы | номер документа |
---|---|---|---|
ГЕРМЕТИЗИРУЮЩАЯ КОМПОЗИЦИЯ ДЛЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ | 2009 |
|
RU2399644C1 |
ГЕРМЕТИЗИРУЮЩАЯ КОМПОЗИЦИЯ ДЛЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ | 2010 |
|
RU2445338C1 |
СЕРОВОДОРОДОСТОЙКИЙ ТАМПОНАЖНЫЙ РАСТВОР | 2011 |
|
RU2471843C1 |
СЕРОВОДОРОДОСТОЙКИЙ УПЛОТНЯЮЩИЙСЯ ИНГИБИРОВАННЫЙ ТАМПОНАЖНЫЙ РАСТВОР | 2015 |
|
RU2588078C1 |
ГЕРМЕТИЗИРУЮЩИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ | 2011 |
|
RU2493189C2 |
СПОСОБ ЭКСПРЕСС-РЕМОНТА ПО ВОССТАНОВЛЕНИЮ ГЕРМЕТИЧНОСТИ ГАЗО-ВОДО-НЕФТЕПРОЯВЛЯЮЩИХ СКВАЖИН | 2005 |
|
RU2287663C2 |
ВЯЗКОУПРУГИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИИ ПРИТОКА ПЛАСТОВЫХ ВОД В СКВАЖИНАХ (ВАРИАНТЫ) | 2008 |
|
RU2377389C1 |
СПОСОБ ЭКСПРЕСС-РЕМОНТА ПО ВОССТАНОВЛЕНИЮ ГЕРМЕТИЧНОСТИ ГАЗОВОДОНЕФТЕПРОЯВЛЯЮЩИХ СКВАЖИН | 2008 |
|
RU2364702C1 |
Способ проведения ремонтно-изоляционных работ в скважине | 2022 |
|
RU2785984C1 |
ВЯЗКОУПРУГИЙ СОСТАВ ДЛЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНАХ | 2008 |
|
RU2380394C2 |
Изобретение относится к нефтегазодобывающей промышленности, в частности к герметизирующим композициям для изоляционных работ в скважине, которые могут быть использованы для изоляции межколонного и заколонного пространства, повторной герметизации резьбовых соединений обсадных колонн при эксплуатации нефтяных и газовых скважин с высоким содержанием сероводорода. Технический результат изобретения - повышение эффективности изоляционных работ в скважинах за счет использования герметизирующей композиции с улучшенными технологическими свойствами, повышение стойкости к сероводородной агрессии. Герметизирующая композиция для изоляционных работ в скважине содержит, мас.%: канифоль сосновая 20-40, масло касторовое 0,5-1,0, ацетон - остальное. 2 табл.
Герметизирующая композиция для изоляционных работ в скважине, включающая канифольсодержащий ингредиент и пластификатор, отличающаяся тем, что она дополнительно содержит ацетон, в качестве канифольсодержащего ингредиента - канифоль сосновую, а в качестве пластификатора - масло касторовое при следующем соотношении ингредиентов, мас.%:
ГЕРМЕТИЗИРУЮЩАЯ КОМПОЗИЦИЯ ДЛЯ РЕМОНТНЫХ И ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ | 2000 |
|
RU2183725C2 |
СПОСОБ ИЗОЛЯЦИИ ЗОН ПОГЛОЩЕНИЯ И ПРИТОКА ПЛАСТОВЫХ ВОД В СКВАЖИНУ | 1996 |
|
RU2107158C1 |
ТАМПОНАЖНЫЙ СОСТАВ | 2000 |
|
RU2179230C2 |
Способ ограничения водопроявлений или поглощений в скважине | 1988 |
|
SU1752931A1 |
СОСТАВ ДЛЯ ИЗОЛЯЦИИ ВОДОПРИТОКА В НЕФТЯНЫХ СКВАЖИНАХ | 1991 |
|
RU2068075C1 |
Герметизирующий состав для нефтяных и газовых скважин | 1984 |
|
SU1263812A1 |
Источник ионов | 1986 |
|
SU1395024A1 |
US 5692566 A, 02.12.1998. |
Авторы
Даты
2010-04-27—Публикация
2008-12-25—Подача