ПАРОЖИДКОСТНЫЙ СТРУЙНЫЙ АППАРАТ Российский патент 2010 года по МПК F04F5/14 

Описание патента на изобретение RU2387885C1

Изобретение относится к области струйной техники, преимущественно к парожидкостным струйным аппаратам, используемым в системах отопления и подачи горячей воды.

Известен парожидкостный струйный аппарат, содержащий корпус с патрубком подвода жидкой среды, активное сопло и камеру смешения (патент RU 2155280, кл. F04F 5/14, опубл. 27.08.2000). Недостатками известного устройства являются невысокая эффективность нагрева жидкости и обильное отложение солей на стенках устройства при его работе.

Задачей изобретения является устранение указанных недостатков. Технический результат заключается в повышении КПД аппарата и снижении количества отложений. Поставленная задача решается, а технический результат достигается тем, что парожидкостный струйный аппарат (далее АФТ), содержащий корпус с патрубком подвода жидкой среды, активное сопло и камеру смешения, имеет корпус, который выполнен из цилиндрической трубы с фланцами на концах, внутри корпуса размещено сопло в виде отдельной детали, имеющее входной цилиндрический участок с внешним диаметром, меньшим внутреннего диаметра трубы корпуса, следующий за ним сужающийся конусной участок и следующий за конусным выходной цилиндрический участок, переходящий в конфузор, при этом камера смешения расположена с зазором относительно корпуса и также выполнена в виде отдельной детали, имеющей входной участок в виде диффузора, центральный цилиндрический участок и выходной участок в виде конфузора, причем угол между внутренней поверхностью конфузора сопла и осью трубы корпуса равен углу между этой осью и внутренней поверхностью диффузора камеры смешения, длина выходной цилиндрической части сопла составляет 0,25-0,35 длины конфузора сопла, а их суммарная длина обеспечивает уменьшение проходного сечения жидкостной среды между входом камеры смешения и выходом сопла в 2-3 раза, а суммарная длина диффузора и цилиндрического участка камеры смешения меньше расстояния от соответствующего фланца корпуса до патрубка.

На чертеже представлен АФТ в сборе.

Парожидкостный струйный аппарат (АФТ) содержит корпус 1, активное сопло 2 и камеру смешения 3. Корпус аппарата имеет патрубок 4 подвода жидкой среды. И корпус, и патрубок выполнены из цилиндрической трубы и на концах имеют фланцы 5. Сопло 2 в виде отдельной детали размещено внутри корпуса 1. Оно имеет несколько участков: входной цилиндрический участок 6, следующий за ним сужающийся конусной участок 7, выходной цилиндрический участок 8 и конфузор 9. Длина выходной цилиндрической части 8 составляет 0,25-0,35 длины конфузора 9, что позволяет стабилизировать поток пара перед распылением. Внешний диаметр сопла на входном цилиндрическом участке 6 меньше внутреннего диаметра трубы корпуса 1, поэтому сопло входит в корпус с зазором. С другой стороны основной трубы в корпусе 1 с зазором размещена камера смешения 3, которая также выполнена в виде отдельной детали. Сопло 2 и камера смешения 3 фиксируются в корпусе с помощью колец-центраторов 10, прижатых к фланцам 5 трубы. Их выполнение в виде отдельных деталей и размещение в корпусе с соответствующим зазором позволяет легко разбирать и собирать устройство. Отверстия фланцев 5 плотно охватывают соответствующую деталь 2-3. Камера смешения 3 также имеет несколько участков, расположенных по ходу движения среды в следующем порядке: диффузор 11, центральный цилиндрический участок 12 и выходной участок в виде конфузора 13. Суммарная длина диффузора 11 и цилиндрического участка 12 камеры смешения должна быть меньше расстояния от соответствующего фланца 5 корпуса до патрубка 4, в этом случае вызванные потоком вырывающейся из конфузора среды колебания будут эффективно гаситься на корпусе, не вызывая расшатывания камеры.

Угол между внутренней поверхностью конфузора сопла и осью трубы корпуса α равен углу между этой осью и внутренней поверхностью диффузора камеры смешения β, что позволяет обеспечить максимальную ламинарность потока жидкости до конца сопла 2 и снизить количество образующихся отложений. Суммарная длина выходного цилиндрического 8 и конфузорного 9 участков сопла 2 обеспечивает уменьшение проходного сечения жидкостной среды между входом камеры смешения 3 и выходом сопла 2 в 2-3 раза, что обеспечивает напор жидкости, необходимый для эффективного перемешивания и интенсивного теплообмена между паром и жидкостью. Увеличение скорости обмена энергии приводит к увеличению КПД устройства.

АФТ работает следующим образом.

Эжектирующая газообразная среда в виде пара подводится в активное сопло 2 через патрубок (не показан), присоединенный к соответствующему фланцу 5 корпуса. Истекая из сопла 2, сверхзвуковой поток пара увлекает в камеру смешения 3 жидкую среду, которая поступает в струйный аппарат через патрубок 4. В ходе смешения пара и жидкости в диффузорном участке 11 камеры 3 формируется режим течения с интенсивным процессом смешения сред, сопровождаемым процессом передачи энергии от эжектирующей среды к эжектируемой среде. На этом этапе формируется сверхзвуковой парожидкостной поток, который в цилиндрической зоне 12 наименьшего проходного сечения камеры смешения 3 преобразуется в дозвуковой жидкостной поток с необходимой величиной давления. Далее в результате дальнейшего торможения в конфузоре 13 кинетическая энергия потока частично преобразуется в давление, после чего жидкостная среда под полученным в струйном аппарате напором подается потребителю.

Предлагаемый аппарат АФТ позволяет нагревать воду до 160°С при максимально создаваемом давлении 2МПа. Устройство устойчиво работает при следующих входных характеристиках: давление пара - 0,01-1,3 МПа, давление воды - 0,01-1 МПа, температура воды - 0-90°С. В зависимости от режима работы устройство потребляет пар в количестве 1-15% от массы воды.

Похожие патенты RU2387885C1

название год авторы номер документа
СТРУЙНЫЙ НАСОС-РАЗОГРЕВАТЕЛЬ (ВАРИАНТЫ) 2008
  • Ворожейкин Сергей Валентинович
  • Бороздин Виктор Сергеевич
RU2387886C2
ВИХРЕВОЙ СТРУЙНЫЙ АППАРАТ 1994
  • Рогачев С.Г.
  • Степанянц В.С.
  • Курбатов Л.М.
RU2076250C1
СПОСОБ ОБРАБОТКИ НЕФТИ С ПОМОЩЬЮ ПОПУТНОГО ГАЗА 2010
  • Бороздин Виктор Сергеевич
  • Селюк Марина Вячеславовна
RU2436834C1
КОНДЕНСАТООТВОДЧИК 1998
  • Осипенко Ю.И.
  • Быков Б.Е.
RU2177105C2
РАСПЫЛИТЕЛЬ ЖИДКОСТИ 2015
  • Байдов Антон Владимирович
  • Биленко Виктор Алексеевич
  • Мурог Игорь Александрович
  • Давыдов Анатолий Павлович
  • Рудомин Евгений Николаевич
  • Рудомин Сергей Евгеньевич
RU2597608C1
ПАРОВОДЯНОЙ НАСОС-ПОДОГРЕВАТЕЛЬ 1997
  • Васильев Д.В.
RU2152542C1
ИНЖЕКТОРНЫЙ СМЕСИТЕЛЬ 1997
  • Кувшинов О.М.
  • Цыцаркин А.Ф.
RU2102129C1
СТРУЙНЫЙ АППАРАТ 1997
  • Кузьмин А.С.
RU2131542C1
ПНЕВМОЭЖЕКТОРНЫЙ ВАКУУМНЫЙ НАСОС 1995
  • Федоров Вячеслав Петрович
RU2088812C1
ВЕТРОГАЗОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ 1998
  • Артамонов А.С.
RU2157902C2

Реферат патента 2010 года ПАРОЖИДКОСТНЫЙ СТРУЙНЫЙ АППАРАТ

Изобретение относится к области струйной техники, преимущественно к парожидкостным струйным аппаратам, используемым в системах отопления и подачи горячей воды. Парожидкостной струйный аппарат содержит корпус с патрубком подвода жидкой среды, активное сопло и камеру смешения. Корпус аппарата выполнен из цилиндрической трубы с фланцами на концах. Внутри корпуса размещено сопло в виде отдельной детали. Оно имеет входной цилиндрический участок, сужающийся конусной участок, выходной цилиндрический участок и конфузор. Внешний диаметр входного цилиндрического участка меньше внутреннего диаметра трубы корпуса. Камера смешения расположена с зазором относительно корпуса и также выполнена в виде отдельной детали. Она имеет входной участок в виде диффузора, центральный цилиндрический участок и выходной участок в виде конфузора. Угол между внутренней поверхностью конфузора сопла и осью трубы корпуса равен углу между этой осью и внутренней поверхностью диффузора камеры смешения. Длина выходной цилиндрической части сопла составляет 0,25-0,35 длины конфузора сопла. А их суммарная длина обеспечивает уменьшение проходного сечения жидкостной среды между входом камеры смешения и выходом сопла в 2-3 раза. Суммарная длина диффузора и цилиндрического участка камеры смешения меньше расстояния от соответствующего фланца корпуса до патрубка. Изобретение позволяет повысить КПД аппарата и снизить количество отложений. 1 ил.

Формула изобретения RU 2 387 885 C1

Парожидкостный струйный аппарат, содержащий корпус с патрубком подвода жидкой среды, активное сопло и камеру смешения, отличающийся тем, что корпус аппарата выполнен из цилиндрической трубы с фланцами на концах, внутри корпуса размещено сопло в виде отдельной детали, имеющее входной цилиндрический участок с внешним диаметром, меньшим внутреннего диаметра трубы корпуса, следующий за ним сужающийся конусной участок и следующий за конусным выходной цилиндрический участок, переходящий в конфузор, при этом камера смешения расположена с зазором относительно корпуса и также выполнена в виде отдельной детали, имеющей входной участок в виде диффузора, центральный цилиндрический участок и выходной участок в виде конфузора, причем угол между внутренней поверхностью конфузора сопла и осью трубы корпуса равен углу между этой осью и внутренней поверхностью диффузора камеры смешения, длина выходной цилиндрической части сопла составляет 0,25-0,35 длины конфузора сопла, а их суммарная длина обеспечивает уменьшение проходного сечения жидкостной среды между входом камеры смешения и выходом сопла в 2-3 раза, а суммарная длина диффузора и цилиндрического участка камеры смешения меньше расстояния от соответствующего фланца корпуса до патрубка.

Документы, цитированные в отчете о поиске Патент 2010 года RU2387885C1

ГАЗОЖИДКОСТНОЙ СТРУЙНЫЙ АППАРАТ 1999
  • Фисенко В.В.
RU2155280C1
US 4781537 A, 01.11.1988
US 4673335 A, 16.06.1987.

RU 2 387 885 C1

Авторы

Бороздин Виктор Сергеевич

Гаврилов Александр Александрович

Даты

2010-04-27Публикация

2009-02-03Подача