СПОСОБ ЛИКВИДАЦИИ ПАРАФИНО-ГИДРАТНЫХ ПРОБОК В НЕФТЕГАЗОВЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2010 года по МПК E21B37/00 

Описание патента на изобретение RU2398956C1

Изобретение относится к нефтяной промышленности и может быть использовано для ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах с фонтанным, газлифтным и механическим способом добычи.

Известно устройство для ликвидации парафино-гидратных пробок в насосно-компрессорных трубах нефтяных скважин, состоящее из нагревателя, заполненного электролитом и спускаемого на кабель-тросе в насосно-компрессорных трубах (далее НКТ) нефтяной скважины (Авторское свидетельство СССР N 1539310, кл. Е21В 36/04, 30.01.1990). При прохождении электрического тока через электролит происходит выделение тепла в местах контакта нагревателя с парафино-гидратной пробкой, что приводит к ее разрушению. К недостаткам устройства относится необходимость создания специального устройства, наличие электролита и подъем этого устройства из скважины для освобождения ствола.

Известно устройство и способ очистки оборудования нефтегазовых трубопроводов и поддержания в них теплового режима в целях предотвращения образования и ликвидации парафиновых пробок (Патент РФ №2167008, ЕВ21В 37/02, 20.05.2001). Способ включает нагрев нагревательным кабелем, который вводят в трубопровод, причем перед вводом кабеля в процессе проведения подготовительной операции определяют длину зоны возможного парафинообразования, длину нагревательного кабеля и температуру его нагрева в зависимости от скорости проходящего в трубопроводе потока жидкости, температуры плавления изоляционного материала нагревательного кабеля и процентного содержания парафина в нефти. Расход энергии, затрачиваемой на нагрев, регулируют временем работы нагревательного кабеля и его температурой, которую поддерживают по всей длине рабочей части нагревательного кабеля не менее чем на 5°С выше температуры плавления парафина в зависимости от изменения температуры окружающей среды. Устройство для осуществления способа содержит установленное в трубопроводе средство для очистки, выполненное в виде нагревательного кабеля, подключенного к источнику питания. Кабель содержит по меньшей мере два нагревательных элемента, изолированных друг от друга, расположенных в изоляционной оболочке и подключенных одними своими концами к источнику питания. Однако при этом не обеспечиваются необходимые эффективность и надежность работы устройства.

Известно устройство для депарафинизации нефтедобывающих скважин, которое содержит нагревательный кабель, расположенный в зоне возможного парафинообразования, и соединенную с ним систему управления его нагревом (Патент РФ №2246606, ЕВ21В 37/02, 20.01.2004). Установка снабжена двухприводным транспортером нагревательного кабеля, выполненным с возможностью обеспечения спуска и подъема в скважине нагревательного кабеля с учетом компенсации выталкивающей силы устьевого давления на нагревательный кабель. Транспортер содержит разъемный корпус, состоящий из двух частей и снабженный регулировочным стягивающим элементом, связанным с его частями для создания усилия прижатия к нагревательному кабелю двух групп роликов. Ролики с осями установлены в разъемном корпусе. На осях роликов установлены шестерни. Одна группа роликов подсоединена к одному приводу, а другая - к другому для обеспечения возможности передачи вращения через шестерни парам роликов. На нагревательном кабеле установлен с возможностью охвата, по меньшей мере, один хомут, который размещен на устьевом сальнике и оборудован противовыбросовым тросом. Изобретение обеспечивает создание нормальных условий для спуска нагревательного кабеля на начальном этапе от устья скважины до 100 м, однако ее депарафинизация при этом энергоемка и не всегда эффективна.

Известно устройство, содержащее источник питания и подключенный к нему кабель в виде двухслойной брони из спирально навитых на подушку металлических проволок и жилы сердечника, соединенных накоротко (Патент РФ №2023867, ЕВ21В 37/02, опубл. 30.11.1994). Число проволок во внешнем слое брони концевого участка длиной не более 1,5 м меньше числа проволок во внешнем слое брони основного участка. Общее электрическое сопротивление брони концевого участка не менее чем в 4 раза превышает электрическое сопротивление жилы сердечника. К недостаткам устройства относится наличие соединения центрального металлического сердечника, накоротко соединенного с броней, что в отдельных случаях приводит к разрыву соединения из-за разницы в коэффициентах линейного теплового расширения, а также в снижении надежности изоляционного слоя при уменьшении количества проволок брони в концевом участке. Кроме того, это устройство и реализуемый им способ не обеспечивают эффективную и экономную ликвидацию парафино-гидратных пробок, так как тепловая мощность рассеяния не может концентрированно оказать воздействие на ликвидацию образовавшейся парафино-гидратной пробки (ближайший аналог).

Назначением изобретения является усовершенствование технологического процесса ликвидации пробок во внутреннем пространстве НКТ и затрубном пространстве в полностью закупоренной нефтяной или газовой скважине. Решаемой технической задачей при этом является приведение скважины в рабочее состояние без глушения скважины и применения подземного ремонта с подъемом колонны НКТ. Достигаемым техническим результатом по сравнению с ближайшим аналогом при практическом применении разработанных способа ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах и устройства для его осуществления является снижение себестоимости, повышение эффективности ликвидации парафино-гидратных пробок и обеспечение безопасности выполняемых работ.

Достижение указанного технического результата осуществляется с помощью созданного способа ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах, включающего погружение линейного грузонесущего нагревательного кабеля во внутреннее пространство колонны насосно-компрессорных труб, нагрев кабеля до максимально возможной рабочей температуры и автоматическое поддержание регулируемой температуры. При этом проводят выматывание нагревательного кабеля с барабана на подготовленную площадку для отвода тепла от кабеля на поверхности во избежание нагрева кабеля на барабане и предотвращения его расплавления в смотанном виде до погружения в скважину. Затем через роликовую консоль с опорным и направляющим роликами опускают кабель на верхнюю границу пробки и герметизируют устье с помощью устьевого сальника. С помощью системы управления нагревом кабеля поддерживают при этом максимальную рабочую температуру кабеля в скважине, осуществляя при этом контроль температуры на конце нагревательного кабеля и средней температуры нагрева кабеля. Полезными модификациями способа являются ситуации, когда опускают нагревательный кабель в скважину в размотанном виде и производят при этом ручное регулирование оператором скорости подачи кабеля в скважину, для чего изменяют величину поджатия сальникового уплотнения и хомутов крепежного устройства, а также когда производят нагрев поверхности кабеля в скважине по всей длине кабеля одинаково и осуществляют тем самым равномерные разогрев, расплавление и поддержание в виде расплавленной фазы парафино-гидратные отложения по всей длине нагревательного кабеля.

Достижение указанного технического результата осуществляется также с помощью созданного устройства для осуществления способа ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах, содержащего конструктивно взаимосвязанные между собой и установленные на фонтанной арматуре роликовую консоль спускоподъемной арматуры с расположенными в одной плоскости опорным и направляющим роликами формирования направленной подачи нагревательного кабеля относительно центральной оси нефтегазовой скважины. При этом опорная площадка консоли закреплена на верхнем горизонтально расположенном резьбовом фланце лубрикаторной задвижки, в резьбовом фланце установлен устьевой сальник уплотнения опускаемого нагревательного кабеля, а на верхней части устьевого сальника установлены хомуты крепежного узла регулировки скорости спуска кабеля в скважину. Рабочая часть нагревательного кабеля вымотана с несущего его барабана на площадку ее охлаждения и размещена на ней перед устьем скважины в направлении плоскости расположения опорного и направляющего роликов. Верхний конец нагревательного кабеля при этом закреплен в контактах газоотделительной коробки, в которую с другой стороны введен и закреплен силовой кабель питания нагревательного кабеля. Второй конец силового кабеля соединен с системой управления тепловым режимом нагревательного кабеля, установленной на заземленной площадке, включенной в общий контур заземления скважины, с которым также соединена газоотделительная коробка. При этом система управления тепловым режимом нагревательного кабеля подключена через электросиловой автомат к источнику электропитания и составлена из взаимосвязанных между собой входного автомата с тепловой защитой от короткого замыкания, программируемого контроллера, а также блоков защиты соответственно по температуре, напряжению, току нагрева и сопротивлению изоляции кабеля.

Для лучшего понимания предлагаемое изобретение при его детальном описании поясняется конкретными примерами его выполнения и прилагаемыми чертежами, на которых изображены:

Фиг.1 - общая схема выполнения, размещения установки и осуществления способа и ликвидации парафиновых пробок предотвращения образования отложений на скважине;

Фиг.2 - схема расположения кабеля на площадке перед скважиной во время работ по ликвидации пробки;

Фиг.3 - принципиальная электрическая блок-схема СУНК.

На фигурах обозначены соответственно (в скобках для удобства указаны первоначальные цифровые обозначения при их немонотонном возрастании, см. также пояснения и рекомендации в Приложении):

1 - нефтегазовая скважина,

2 - фонтанная арматура

3 - роликовая консоль спускоподъемной арматуры,

4 - опорный ролик,

5 - направляющий ролик,

6 - нагревательный кабель,

7 - резьбовой фланец,

8 - лубрикаторная задвижка,

9 - устьевой сальник,

10- крепежный узел,

11 - барабан,

12 - газоотделительная коробка,

13 - силовой кабель,

14 - система управления нагревом,

15 - заземленная площадка,

16 - электросиловой автомат,

17 - источник электропитания,

18 - повышающий трансформатор ТМПН,

19 - входной автомат тепловой защиты,

20 - плата питания,

21 - плата измерения и управления,

22 - плата контроля и индикации,

23 - силовой блок,

24 - плата драйвера,

25 - кабельный защитный наконечник,

26 - оболочка из высокотемпературного сополимера,

27 - грузонесущая броня,

28 - манифольдная труба,

29 - термодатчик контроля температуры выходящего потока скважинной жидкости.

При детальном описании предложенных способа и устройства нет необходимости подробно останавливаться на известных из опубликованных источников информации сведениях. Детально целесообразно описать отличительные существенные особенности, в частности, предложенного способа, включающего подачу протяженного грузонесущего нагревательного кабеля в НКТ с одновременным нагревом кабеля, обеспечивающим поддержание температуры, позволяющей проводить гарантированный разогрев отложений. При этом внутреннее пространство скважины загерметизировано с помощью устьевого сальника или какого-либо аналогичного устройства, исключающего выброс скважинной жидкости во время проведения работ в связи с появлением давления на устье скважины при прохождении интервала отложений.

Нагрев кабеля по всей длине обеспечивает постепенный разогрев отложений с верхней части пробки в соответствии с глубиной подачи кабеля в скважину. При этом та часть отложений, которая соприкасается с кабелем, остается в расплавленном состоянии, вследствие чего при прохождении интервала пробки при выходе конца кабеля в открытый участок, в связи с наличием давления под пробкой, начинается движение жидкости или газа (самопроизвольное при фонтанном и газлифтном способе добычи и принудительное - при включении электрического центробежного насоса (ЭЦН) - при механическом способе добычи), при котором происходит вынос расплавленных продуктов отложений из скважины. При прохождении интервала пробки нагревательный кабель опускают полностью на глубину максимально возможного образования отложений, закрепляют на устье скважины и затем продолжают прогрев скважины с целью создания поля нагретого пространства вокруг НКТ, что обеспечивает разогрев затрубного пространства скважины.

Согласно изобретению технология работ предусматривает вымотку нагревательного кабеля с транспортного или рабочего барабана лебедки и его расположение на подготовленную площадку перед устьем скважины для отвода тепла от кабеля во избежание нагрева кабеля на барабане и предотвращения его расплавления в смотанном виде. Подача кабеля в скважину осуществляется через ролики, установленные на смонтированной на фонтанной арматуре роликовой консоли или через ролики, один из которых подвешен на крюке грузоподъемного механизма (автокран, краноманипуляторная установка, элеватор подъемника), а второй закреплен на планшайбе фонтанной арматуры. Регулировка скорости подачи кабеля в скважину может осуществляться как поджатием сальниковых уплотнений, использованием крепежных элементов кабеля на устье скважины, так и использованием дополнительных узлов, позволяющих исключить свободное соскальзывание кабеля в скважину. В случае успешного проведения работ в скважине нагревательный кабель может быть оставлен в скважине для предотвращения образования отложений и исключения необходимости в применении других методов депарафинизации, таких как механических (скребки, фрезы), тепловых (обработки горячими жидкостями), химических (ингибиторы парафинообразования). Кроме того, нагревательный кабель может быть извлечен из скважины с помощью управляемой лебедки.

Наиболее эффективное достижение технического результата осуществляется установкой прогрева скважин (УПС), предназначенной для ликвидации и предотвращения образования парафино-гидратных пробок в нефтяных и газовых скважинах. УПС включает нагревательный кабель, спускаемый в скважину во внутреннее пространство НКТ, газоотделительную коробку, предназначенную для безопасного соединения нагревательного кабеля с силовым, систему управления нагревом кабеля (СУНК). При этом нагревательный кабель содержит не менее одного линейного нагревательного элемента, распределяющего нагрев равномерно по наружной поверхности кабеля.

Как следует из изложенного, в качестве нагревательного элемента могут быть выбраны многожильные кабели, в качестве нагревательного элемента использующие медные, алюминиевые или стальные жилы, необходимое количество N и сечение которых определяют в пределах 1<N<10 в зависимости от необходимой удельной мощности нагревательного кабеля. Жилы размещают вокруг центрального полимерного сердечника, в котором могут располагаться специальные провода, использующиеся для передачи измерительных сигналов или других задач, электрически изолированных от токопроводящих жил нагревательного элемента.

Причем монолитность нагревательного кабеля, содержащего нагревательные жилы, изоляционные слои и армированную грузонесущую броню, выполнена таким образом, что газы и жидкость, содержащиеся в нефтегазовой скважине, не могут проникнуть внутрь кабеля по его длине более чем на 2 м в обе стороны при рабочих давлениях в нижней части кабеля, не превышающих 25 МПа. В качестве дополнительной меры безопасности от проникновения газа по нагревательному кабелю согласно «Правилам безопасности в нефтяной и газовой промышленности» применяется газоотделительная коробка (коробка холодного ввода), устанавливаемая не менее 5 м от устья скважины.

Кроме того, нагревательные жилы и броня конца нагревательного кабеля, спускаемого в скважину, электрически изолированы друг относительно друга, что позволяет СУНК отслеживать состояние изоляции нагревательного элемента и своевременно отключать подачу электропитания во избежание прогара кабеля, отделения при отгорании и падения нижней части в скважину. Согласно изобретению роликовая консоль с направляющим и опорным роликами крепится на верхний резьбовой фланец лубрикаторной задвижки фонтанной арматуры, причем расстояние между верхней частью устьевого сальника и горизонтальной плоскостью, проходящей через ось направляющего ролика, составляло не менее 1 м. При этом система управления нагрева кабеля содержит программируемый контроллер управления нагревом, силовой блок, блоки защит, позволяющий вести автоматический процесс управления нагревом по заданным уставкам при минимальном участии обслуживающего персонала.

Целесообразно также более детально описать оптимальный вариант устройства для осуществления способа ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах, схематически отображенного на Фиг.1, 2 и 3. В обваловке нефтегазовой скважины 1 (Фиг.1) на фонтанной арматуре 2 устанавливается роликовая консоль 3 спускоподъемной арматуры с двумя роликами (опорным 4 и направляющим 5), обеспечивающая направленную подачу кабеля 6 относительно центральной оси скважины 1. Ролики 4, 5 расположены в одной плоскости. Опорная площадка консоли 3 закрепляется на верхнем, горизонтально расположенном резьбовом фланце 7 лубрикаторной задвижки 8. В фланец 7 устанавливается устьевой сальник 9, через который в скважину 1 опускается нагревательный кабель 6, пропущенный по роликам 4, 5. На верхней части устьевого сальника 9 устанавливаются хомуты крепежного устройства 10, позволяющие, при необходимости, проводить регулировку скорости спуска кабеля 6 в скважину 1. Нагревательный кабель 6 выматывается с барабана 11 на подготовленную площадку и размещается на ней для его охлаждения при нагреве перед устьем скважины 1 в направлении плоскости расположения роликов 4, 5 (Фиг.2). Верхний конец нагревательного кабеля 1 закрепляется в контактах газоотделительной коробки 12, в которую с другой стороны вводится и закрепляется силовой кабель 13 (Фиг.1), причем сечение силового кабеля должно не менее чем в 1,5 раза превышать общее сечение нагревательных жил кабеля 6. Второй конец силового кабеля 13 соединен с системой 14 управления нагревом кабеля 6, установленной на специальной площадке 15, включенной в общий контур заземления скважины 1. Газоотделительная коробка 12 также соединена с общим контуром заземления. К системе 15 управления нагревом кабеля 6 через электросиловой автомат 16 подведена силовая линия напряжением 380 В от источника электропитания трехфазного тока (КТП, ДЭС). Мощность источника 17 электропитания выбирается в соответствии с мощностью применяемой установки прогрева скважин.

При необходимости, в случае применения длин нагревательного кабеля 6, не позволяющих обеспечить выделение необходимой удельной мощности, или в случае усиленного отвода температуры с поверхности нагревательного кабеля 6, в силовую цепь установки включается специальный повышающий трансформатор ТМПН 18, с помощью которого обеспечивается подача на нагревательный кабель 6 мощности, необходимой для успешного проведения работ.

На Фиг.3 приведена принципиальная блок-схема автоматической системы 14 управления нагревом кабеля 6 - (СУНК), содержащей входной автомат 19 (Фиг.2) с тепловой защитой от короткого замыкания, плату питания 20, плату измерения и управления 21, плату контроля и индикации 22, силовой блок 23, плату драйвера 24. Питание станции осуществляется от трехфазной сети переменного тока напряжением 380 В частоты 50 Гц. Полная работоспособность станции сохраняется при отклонении напряжения сети от номинального значения в пределах от -30% до +30%.

Технические характеристики станции в зависимости от исполнения приведены в таблице 1.

Таблица 1 Технические характеристики Тип станции СУНК Номинальный ток силовой цепи (первичной), А 400 Максимальный ток короткого замыкания (кА) 4,0 Ном. Напряжение силовой цепи (первичной), В ~380 В±30% Номинальный ток силовой цепи (вторичной), А 130 Ном. Напряжение силовой цепи (вторичной), В ~850 В±30% Выходное напряжение (постоянное), В 0…1200±30% Ном. Выходной ток, А 160 Ном. частота питающей сети, Гц 50±2 Ном. Напряжение цепей управления, В 380/220/24±30% Потребляемая мощность не более, Вт 500 КПД, % не менее 95

Станция обеспечивает следующие функции:

1) нагрев кабеля в «периодическом» режиме по заданной температуре и времени паузы;

2) поддержание температуры кабеля в режиме «стабилизации»

3) стабилизацию заданного тока потребления;

4) дистанционный контроль и управление СУ с диспетчерского пункта по дискретным каналам (+24В) или интерфейсу RS-485;

5) сбор и обработка полученной информации о состоянии греющего кабеля, датчиков температуры и параметров работы станции;

6) автоматическое включение СУ с регулируемой выдержкой времени при подаче напряжения питания либо при восстановлении напряжения питания в соответствии с нормой;

7) выбор активного и неактивного состояния защит отдельно для каждой защиты;

8) запись в реальном времени в блок памяти информации с регистрацией текущих параметров;

9) передачу накопленной информации в портативный компьютер;

10) сохранение заданных параметров работы и накопленной информации при отсутствии напряжения питания;

11) станция обеспечивает измерения и вычисления с отображением на буквенно-цифровом дисплее всех необходимых параметров.

Кабельный защитный наконечник 25 (Фиг.1) устанавливается на нижнем конце нагревательного кабеля 6, включающего оболочку 26 из высокотемпературного сополимера с удаленными проволоками грузонесущей брони 27 в нижней части наконечника. Концы нагревательных жил накоротко замкнуты в нижней части кабеля 6, причем для контроля температуры нагрева наконечника 25 в кабеле устанавливается глубинный термодатчик (термосопротивление), соединенный с СУНК 14 измерительными жилами. Внутреннее пространство защитного наконечника 25 под давлением заполняется сополимером. Кабельный наконечник 25 с усилием насаживается на верхний слой изоляции армированной брони 27 и закатывается под давлением, что обеспечивает надежную изоляцию нагревательных жил от воздействия скважинной жидкости.

Предлагаемый способ и установка прогрева скважин для ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах работает следующим образом.

На скважине 1, потерявшей циркуляцию в результате образования парафино-гидратной пробки, шаблонированием определяют глубину верхней части пробки. В соответствии с «Правилами безопасности в нефтяной и газовой промышленности» на площадке 15 устанавливают систему 14 управления нагревом кабеля 6 и при необходимости трансформатор 18. Возле устья скважины 1 закрепляют газоотделительную коробку 12 и производят обвязку наземного оборудования силовыми кабелями 13 согласно схеме подключения (руководству по эксплуатации). Через силовой кабель 13 и силовой автомат 16 СУНК подключают к 3-фазному источнику 17 напряжением 380 В необходимой мощности.

В манифольдную трубу 28 выкидной линии врезают термокарман, в который устанавливают термодатчик 17 контроля температуры выходящего потока скважинной жидкости и соединяют его через измерительный провод через плату внешних подключений с СУНК 14. На резьбовой фланец 7 лубрикаторной задвижки 8 фонтанной арматуры 2 устанавливают и надежно закрепляются роликовую консоль 3 с опорным роликом 4 и направляющим роликом 5. При этом расположение направляющего ролика 5 подобрано таким образом, что ось выхода нагревательного кабеля 6 из щек ролика 5 совпадает с центральной осью скважины 1.

Нагревательный кабель 6 выматывают с транспортного барабана 11 и раскладывают на подготовленной площадке в направлении плоскости роликов 4, 5. Верхний конец нагревательного кабеля 6 через газоотделительную коробку 12 соединяют с системой управления нагревом кабеля 14, после чего проводится проверка работоспособности всей установки на поверхности. Перед спуском нагревательного кабеля 6 в скважину 1 в резьбовой фланец 7 устанавливают устьевой сальник 9, причем сальниковые уплотнения ослабляют для свободного прохождения через него нагревательного кабеля 6.

После окончания подготовительных работ приступают к спуску нагревательного кабеля в скважину, причем в условиях низких температур (до -40°С) на нагревательный кабель 6 подается нагрузка в размере примерно 50-60% от номинальной мощности. Этим достигается положительная температура кабеля и возможность проведения аварийных работ с кабелем при пониженных температурах.

Нижний конец нагревательного кабеля 6 с защитным наконечником 25 пропускают через ролики 4, 5 и через устьевой сальник 9 подают в скважину. Нагревательный кабель 6 вручную подают в скважину 1 до начала свободного спуска кабеля под собственным весом. Затем поджимают сальниковые уплотнения и плавно подают нагревательный кабель 6 на верхнюю кромку пробки. После остановки нагревательного кабеля 6 на пробке на кабель устанавливают крепежное устройство 10 и регулируют усилие затяжки хомутов крепежного устройства, обеспечивающего спуск кабеля 6 в скважину со скоростью 1-2 метра в минуту.

По окончании регулировки скорости спуска на нагревательный кабель 6 подают необходимую для разогрева пробки мощность. Для этого на контроллере 20 системы 14 управления нагревом задают величину тока нагрузки, позволяющую поддерживать максимальную рабочую температуру кабеля 6, и устанавливают предел максимальной температуры. При этом контроллер 20 автоматически поддерживает заданный температурный режим работы кабеля 6.

Через 10-20 минут наблюдается начало движения нагревательного кабеля 6 в скважину 1, причем с увеличением веса кабеля в скважине увеличивается скорость подачи кабеля. Опытным путем установлено, что в пределах глубины до 100 м скорость растепления пробки составляла 5-10 м/час, на глубине до 300 м скорость составляла 20-25 м/час, на глубине 500 м скорость увеличивалась до 50 м/час. Так, на фонтанной скважине Восточно-Сарутаюсского месторождения (интервал парафиновой пробки 40-650 м) ликвидация пробки нагревательным кабелем и вывод скважины на рабочий режим заняли всего 40 часов. Прохождение пробки сопровождается увеличением скорости движения кабеля 6 вниз, появлением показаний температуры, отличных от температуры окружающей среды на устьевом термодатчике 29, скачкообразным падением температуры на глубинном термодатчике.

Практическая эффективность заявляемого изобретения и достижение указанного технического результата подтверждается проведенными испытаниями и практическим применением данного способа на всех типах скважин. Были проведены работы по растеплению закупоренных фонтанных скважин на Восточно-Сарутаюсском и Ярудейском нефтяных месторождениях, Средне-Вилюйском газоконденсатном месторождении. Скважины с установками ЭЦН обрабатывались на Чернавинском, Харьягинском и Перевозном нефтяных месторождениях. В результате проведенных работ не только сокращалось время ликвидации парафино-гидратных отложений, но и полностью исключались такие виды работ, как глушение скважин (особенно фонтанных), необходимость проведения подземного ремонта с подъемом НКТ, сокращалось время простоя скважины. Экономический эффект одной операции составил более 12 млн. рублей.

Похожие патенты RU2398956C1

название год авторы номер документа
СПОСОБ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ И ЛИКВИДАЦИИ ПАРАФИНОВЫХ ПРОБОК В НЕФТЕГАЗОВЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Самгин Ю.С.
RU2158819C2
СПОСОБ ПРОГРЕВА ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Кузнецов Владимир Александрович
  • Чесноков Игорь Святославович
  • Сергеев Петр Геннадьевич
  • Блохин Константин Николаевич
  • Зотеев Сергей Николаевич
RU2559975C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ЗАПУСКА В РАБОТУ ЗАПАРАФИНЕННОЙ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2004
  • Самгин Юрий Сергеевич
RU2275493C1
УСТРОЙСТВО ДЛЯ ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ И ЛИКВИДАЦИИ ГИДРАТНЫХ И ПАРАФИНОВЫХ ОБРАЗОВАНИЙ В ПОДЪЕМНЫХ ТРУБАХ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН 2004
  • Семенов Владислав Владимирович
RU2272893C2
СПОСОБ ЛИКВИДАЦИИ ПАРАФИНО-КРИСТАЛЛОГИДРАТНОЙ ПРОБКИ В СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Лыкин М.С.
  • Зубаков В.В.
  • Чернуха Н.И.
  • Лисовский С.Н.
RU2132452C1
СПОСОБ ДЕПАРАФИНИЗАЦИИ НЕФТЕГАЗОВЫХ СКВАЖИН И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Самгин Ю.С.
RU2166615C1
СПОСОБ РАЗРУШЕНИЯ АСФАЛЬТОСМОЛОПАРАФИНОВЫХ, ГИДРАТНЫХ И ЛЕДЯНЫХ ПРОБОК В ЭКСПЛУАТАЦИОННЫХ СКВАЖИНАХ 2006
  • Киршов Валерий Анатольевич
  • Чернышев Андрей Валерьевич
  • Аминев Нафис Раисович
  • Мазаев Владимир Владимирович
RU2312975C1
СПОСОБ ЛИКВИДАЦИИ И ПРЕКРАЩЕНИЯ ЗАГРЯЗНЕНИЙ НЕФТЕГАЗОДОБЫВАЮЩЕЙ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Александров Владимир Александрович
  • Качнов Андрей Владимирович
  • Попов Вадим Павлович
  • Шураева Татьяна Александровна
RU2487989C1
УСТРОЙСТВО ДЛЯ ЛИКВИДАЦИИ ПАРАФИНОГИДРАТНЫХ ОБРАЗОВАНИЙ В СКВАЖИННЫХ ТРУБАХ 1991
  • Ерухимович С.З.
  • Арутюнов А.А.
  • Снитковский Л.П.
RU2023867C1
СПОСОБ ЛИКВИДАЦИИ ПАРАФИНОКРИСТАЛЛОГИДРАТНОЙ ПРОБКИ В СКВАЖИНАХ 2000
  • Лыкин М.С.
  • Зубаков В.В.
RU2168002C1

Иллюстрации к изобретению RU 2 398 956 C1

Реферат патента 2010 года СПОСОБ ЛИКВИДАЦИИ ПАРАФИНО-ГИДРАТНЫХ ПРОБОК В НЕФТЕГАЗОВЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Группа изобретений относится к нефтяной промышленности и может быть использована для ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах. При осуществлении способа погружают линейный грузонесущий нагревательный кабель во внутреннее пространство колонны насосно-компрессорных труб, нагревают его до максимально возможной рабочей температуры. При этом проводят выматывание кабеля с барабана на поготовленную площадку для отвода тепла от кабеля на поверхности, через роликовую консоль с опорным и направляющим роликами опускают кабель на верхнюю границу пробки, герметизируют устье с помощью устьевого сальника. С помощью системы управления нагревом кабеля поддерживают максимальную рабочую температуру кабеля в скважине, осуществляют при этом контроль температуры на конце кабеля и средней температуры нагрева кабеля. Снижается себестоимость, повышается эффективность ликвидации парафино-гидратных пробок, обеспечивается безопасность выполняемых работ. 2 н. и 2 з.п. ф-лы, 3 ил., 1 табл.

Формула изобретения RU 2 398 956 C1

1. Способ ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах, включающий погружение линейного грузонесущего нагревательного кабеля во внутреннее пространство колонны насосно-компрессорных труб, нагрев кабеля до максимально возможной рабочей температуры и автоматическое поддержание регулируемой температуры, при выполнении которых проводят выматывание нагревательного кабеля с барабана на подготовленную площадку для отвода тепла от кабеля на поверхности во избежание нагрева кабеля на барабане и предотвращения его расплавления в смотанном виде до погружения в скважину, затем через роликовую консоль с опорным и направляющим роликами опускают кабель на верхнюю границу пробки, герметизируют устье с помощью устьевого сальника, с помощью системы управления нагревом кабеля поддерживают максимальную рабочую температуру кабеля в скважине, осуществляя при этом контроль температуры на конце нагревательного кабеля и средней температуры нагрева кабеля.

2. Способ по п.1, по которому опускают нагревательный кабель в скважину в размотанном виде и производят при этом ручное регулирование оператором скорости подачи кабеля в скважину для чего изменяют величину поджатия сальникового уплотнения и хомутов крепежного устройства.

3. Способ по п.1, по которому производят нагрев поверхности кабеля в скважине по всей длине кабеля одинаково и осуществляют тем самым равномерные разогрев, расплавление и поддержание в виде расплавленной фазы парафино-гидратные отложения по всей длине нагревательного кабеля.

4. Устройство для осуществления способа ликвидации парафино-гидратных пробок в нефтяных и газовых скважинах, содержащее конструктивно взаимосвязанные между собой и установленные на фонтанной арматуре роликовую консоль спускоподъемной арматуры с расположенными в одной плоскости опорным и направляющим роликами формирования направленной подачи нагревательного кабеля относительно центральной оси нефтегазовой скважины, при этом опорная площадка консоли закреплена на верхнем горизонтально расположенном резьбовом фланце лубрикаторной задвижки, в резьбовом фланце установлен устьевой сальник уплотнения опускаемого нагревательного кабеля, а на верхней части устьевого сальника установлены хомуты крепежного узла регулировки скорости спуска кабеля в скважину, рабочая часть нагревательного кабеля вымотана с несущего его барабана на площадку ее охлаждения и размещена на ней перед устьем скважины в направлении плоскости расположения опорного и направляющего роликов, верхний конец нагревательного кабеля при этом закреплен в контактах газоотделительной коробки, в которую с другой стороны введен и закреплен силовой кабель питания нагревательного кабеля, а второй конец силового кабеля соединен с системой управления тепловым режимом нагревательного кабеля, установленной на заземленной площадке, включенной в общий контур заземления скважины, с которым также соединена газоотделительная коробка, при этом система управления тепловым режимом нагревательного кабеля подключена через электросиловой автомат к источнику электропитания и составлена из взаимосвязанных между собой входного автомата с тепловой защитой от короткого замыкания, программируемого контроллера, а также блоков защиты соответственно по температуре, напряжению, току нагрева и сопротивлению изоляции кабеля.

Документы, цитированные в отчете о поиске Патент 2010 года RU2398956C1

СПОСОБ ДЕПАРАФИНИЗАЦИИ НЕФТЕГАЗОВЫХ СКВАЖИН И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Самгин Ю.С.
RU2166615C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ЗАПУСКА В РАБОТУ ЗАПАРАФИНЕННОЙ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2004
  • Самгин Юрий Сергеевич
RU2275493C1
СПОСОБ И УСТРОЙСТВО ЛИКВИДАЦИИ И ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ И ПРОБОК В НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИНАХ 2003
  • Мельников В.И.
RU2248442C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ И ЛИКВИДАЦИИ ПАРАФИНОВЫХ ПРОБОК В НЕФТЕГАЗОВЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Самгин Ю.С.
RU2158819C2
УСТАНОВКА ДЛЯ ДЕПАРАФИНИЗАЦИИ НЕФТЕДОБЫВАЮЩИХ СКВАЖИН 2002
  • Самгин Ю.С.
  • Кузнецов В.А.
  • Должанский И.С.
RU2246606C2
US 4616705 А1, 14.10.1986.

RU 2 398 956 C1

Авторы

Кузнецов Владимир Александрович

Даты

2010-09-10Публикация

2009-06-25Подача