ПОЛУПРОВОДНИКОВАЯ ИНТЕГРАЛЬНАЯ СХЕМА (ВАРИАНТЫ) Российский патент 2010 года по МПК H01L27/04 

Описание патента на изобретение RU2400864C2

Изобретения относятся к области электронной техники, в частности к конструированию и технологии изготовления полупроводниковых интегральных схем (ИС), и могут быть использованы в цифровых, аналоговых и запоминающих устройствах микроэлектроники.

Известны кремниевые полупроводниковые интегральные схемы транзисторно-транзисторной логики (ТТЛ), изготовленные планарно-эпитаксиальной технологией с изоляцией p-n-переходом методом коллекторной изолирующей диффузии (КИД-технология), методами «Изопланар», «Полипланар» или методом «V-ATE» и др. технологиями (И.Е.Ефимов, И.Я.Козырь. «Основы микроэлектроники» (проектирование)» М., Высшая школа, 1978 г., с.266-298, И.Е.Ефимов, И.Я.Козырь. «Основы микроэлектроники» (физические и технологические основы)» М., Высшая школа, 1986 г., с.329-339).

Недостатками указанных полупроводниковых ИС планарно-эпитаксиальной структуры являются низкая надежность Р≤0,98, низкая предельная степень интеграции (составляет величину порядка N=2,5·107 эл/см2), высокий уровень межэлектродных соединений, по объему соизмеримый с рабочим объемом активных транзисторных элементов, высокий уровень потребляемой мощности на одно переключение (Рпотр≈8·10-8 Вт или фактор качества Q>10-15 Дж) и др.

Наиболее близким аналогом является кремниевая полупроводниковая ИС NMOS-структуры, сформированная на непланарной сферической подложке из кремния диаметром 1-1,2 мм, получаемой в специальной плазменной печи. На поверхности кремниевых полуизолирующих сфер p-типа с использованием стереофотолитографии сформированы «ЧИП» (или вентиль) MOS транзистора с изолированным затвором, вырожденные монокристаллические кремниевые n+ типа слои стока и истока с металлическими контактами, а также слои диэлектрика SiO2, на котором образован металлический контакт затвора (патент США №5945725, кл. H01L 29/06, публ. 1999 г.).

Недостатками указанной кремниевой полупроводниковой ИС NMOS-структуры являются:

1. Размер интегрального MOS «ЧИПА» составляет значительную величину порядка Δ≈5 мкм;

2. Степень интеграции ограничивается поверхностью сферы диаметром 1-1,2 мм и составляет величину N<106 эл/см;

3. При формировании кристаллов сверхбольших, например, СБИС возникает необходимость соединения кремниевых сфер-гранул в блоки с помощью специального монтажа на единых платформах, существенно отличающихся от стандартных габаритов корпусов ИС, что ухудшает показатели надежности (P≤0,95 и рассеиваемая мощность P>10-7 Вт на одно переключение).

Техническими результатами, которые могут быть получены при осуществлении изобретений, являются увеличение степени интеграции ИС, уменьшение топологического размера элемента, снижение уровня межэлектродных соединений, снижение потребляемой мощности на одно переключение, повышение надежности.

Указанный технический результат в первом варианте изобретения достигается тем, что содержащийся в полупроводниковой интегральной схеме высокоомный монокристаллический кремниевый слой выращен в виде полого цилиндра, в котором сформированы области разного типа проводимости, образующие биполярные транзисторы, резисторы и конденсаторы, на внешней поверхности высокоомного монокристаллического кремниевого слоя сформированы эмиттерные и базовые контакты, прилегающие к соответствующим областям соответствующих транзисторов, соединенные с резисторами и конденсаторами токоведущими дорожками, сформированными на поверхности диэлектрика, размещенного на внешней поверхности высокоомного монокристаллического кремниевого слоя, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован коллекторный контакт в виде полого цилиндра, прилегающий к коллекторным областям транзисторов.

Во втором варианте изобретения указанный технический результат достигается тем, что содержащийся в полупроводниковой интегральной схеме высокоомный монокристаллический кремниевый слой выращен в виде полого цилиндра, в котором сформированы области разного типа проводимости, образующие биполярные транзисторы, резисторы и конденсаторы, на внешней поверхности высокоомного монокристаллического кремниевого слоя сформированы коллекторные и базовые контакты, прилегающие к соответствующим областям соответствующих транзисторов, соединенные с резисторами и конденсаторами токоведущими дорожками, сформированными на поверхности диэлектрика, размещенного на внешней поверхности высокоомного монокристаллического кремниевого слоя, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован эмиттерный контакт в виде полого цилиндра, прилегающий к эмиттерным областям транзисторов.

Кроме того, как в первом, так и во втором вариантах изобретений токоведущие дорожки и эмиттерные, базовые и коллекторные контакты могут быть выполнены из двух слоев из разных немагнитных металлов, причем слои формируются таким образом, что слой, расположенный со стороны высокоомного монокристаллического кремниевого слоя, имеет меньшую удельную проводимость в направлении протекания электрического тока, чем удельная проводимость другого слоя в том же направлении.

На чертеже представлена ИС типа ТТЛ на кремниевой цилиндрической подложке.

Полупроводниковая интегральная схема содержит высокоомный монокристаллический кремниевый p-типа слой, выращенный в виде тонкостенного полого цилиндра 1, в котором сформированы эмиттерные (n-типа) 2, коллекторные (n-типа) 3 и базовые (p-типа) 4 области, образующие биполярные (n-p-n) транзисторы, и области, образующие пассивные элементы 5 (резисторы и конденсаторы).

На внешней поверхности высокоомного монокристаллического кремниевого p-типа слоя сформированы эмиттерные 6 и базовые 7 контакты, прилегающие к соответствующим областям соответствующих транзисторов.

Эмиттерные 6 и базовые 7 контакты соединены с пассивными элементами 5 (резисторами и конденсаторами) межэлектродными соединениями - токоведущими дорожками 8, сформированными на поверхности изолирующего диэлектрика 9 - слоя двуокиси кремния, размещенного на внешней поверхности высокоомного монокристаллического кремниевого p-типа слоя.

На внутренней поверхности высокоомного монокристаллического кремниевого слоя образован коллекторный контакт 10 в виде тонкостенного полого цилиндра, прилегающий к коллекторным областям 3 транзисторов.

Контакт 10 может прилегать к коллекторным областям 3 транзисторов не непосредственно, а через подложку - кремниевый слой p-типа.

Токоведущие дорожки 8 и эмиттерные 6, базовые 7 и коллекторный 10 контакты состоят из двух слоев 11 и 12 из разных немагнитных металлов, например титана, платины, золота, серебра, меди, алюминия, молибдена или вольфрама.

Слои 11 и 12 сформированы таким образом, что слой, расположеный со стороны высокоомного монокристаллического кремниевого слоя, имеет меньшую удельную проводимость в направлении протекания электрического тока, чем удельная проводимость другого слоя в том же направлении. Это обеспечивается подбором металлов для выполнения слоев.

Эмиттерные 2, базовые 4 и коллекторные 3 области, а также пассивные элементы 5 сформированы методами стереофотолитографии или другими известными способами.

Принцип действия полупроводниковой цилиндрической кремниевой интегральной схемы, например типа ТТЛ, заключается в следующем.

При приложении внешнего напряжения U0≤5 В входной интегральный транзистор n-p-n-типа элементарной ячейки ТТЛ интегральной схемы пропускает большой ток, а падение напряжения на нем мало и составляет величину ΔU0≤0,8 В.

В режиме насыщения оба p-n перехода интегрального транзистора смещены в прямом направлении, вследствие чего в областях базы и коллектора накапливаются заряды неосновных носителей. При переводе транзистора из открытого состояния в закрытое необходимо затратить определенное время на рассасывание зарядов, после чего транзистор элементарной ячейки выключается, т.е. переходит в режим отсечки. Время рассасывания зарядов играет основную роль в определении времени задержки распространения входного сигнала, т.е. в быстродействии схемы, оно равно tз<10 нс при средней мощности потребления на один элемент цилиндрической ИС Р≤10-8 Вт, а произведение времени задержки на мощность Q=Р·tз находится в интервале 10π Дж<Q<50π Дж, так как степень интеграции увеличивается в 2π раз на поверхности цилиндрической подложки, а число токоведущих дорожек при наличии управляющего внутреннего цилиндрического (трубчатого) контакта, в силу цилиндрической симметрии, уменьшается в 2π раз.

При подаче во внутреннюю полость коллекторного контакта 10 охлаждающего агента обеспечивается дополнительная возможность принудительного охлаждения ИС, что приводит к повышению ее мощности и надежности в эксплуатации.

Особенностью второго варианта изобретения является то, что в виде полого цилиндра 1 выращен высокоомный монокристаллический кремниевый слой n-типа, в котором сформированы эмиттерные (p-типа) 2, коллекторные (p-типа) 3 и базовые (n-типа) 4 области, образующие биполярные (p-n-p) транзисторы, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован эмиттерный контакт 10 в виде полого цилиндра, прилегающий к эмиттерным областям 3 транзисторов.

Похожие патенты RU2400864C2

название год авторы номер документа
БИПОЛЯРНЫЙ ТРАНЗИСТОР 2000
  • Кожитов Л.В.
  • Кондратенко Т.Т.
  • Крапухин В.В.
  • Тимошина Г.Г.
  • Кондратенко Т.Я.
RU2173916C1
Способ изготовления интегральной схемы 1976
  • Болдырев В.П.
  • Гайдук И.Н.
  • Малейко Л.В.
  • Савотин Ю.И.
  • Степанов В.П.
SU594838A1
Способ изготовления инжекционных интегральных схем 1980
  • Волынчикова Л.Ф.
  • Красницкий В.Я.
  • Савотин Ю.И.
SU986236A1
СВЧ-ТРАНЗИСТОРНАЯ МИКРОСБОРКА 1992
  • Асессоров В.В.
  • Гаганов В.В.
  • Жильцов В.И.
RU2101803C1
БИПОЛЯРНЫЙ ТРАНЗИСТОР НА ОСНОВЕ ГЕТЕРОЭПИТАКСИАЛЬНЫХ СТРУКТУР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Аветисян Грачик Хачатурович
  • Перевезенцев Александр Владимирович
  • Шишков Дмитрий Владимирович
RU2507633C1
СВЕРХВЫСОКОЧАСТОТНЫЙ БИПОЛЯРНЫЙ p-n-p ТРАНЗИСТОР 2010
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
  • Думаневич Анатолий Николаевич
RU2485625C2
КОМПЛЕМЕНТАРНАЯ БИПОЛЯРНАЯ СХЕМА И - НЕ (ВАРИАНТЫ) 1993
  • Трубочкина Н.К.
  • Петросянц К.О.
RU2094910C1
Интегральная биполярная структура 1990
  • Дворников Олег Владимирович
  • Любый Евгений Михайлович
SU1746440A1
ПОЛУПРОВОДНИКОВЫЙ МАГНИТНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2004
  • Козлов Антон Викторович
  • Тихонов Роберт Дмитриевич
RU2284612C2
Интегральная схема быстродействующего матричного приемника оптических излучений 2015
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
  • Краснов Андрей Андреевич
  • Кузьмина Ксения Андреевна
  • Диденко Сергей Иванович
  • Омельченко Юлия Константиновна
  • Леготин Александр Николаевич
  • Яромский Валерий Петрович
  • Ельников Дмитрий Сергеевич
  • Бажуткина Светлана Петровна
  • Леготина Нина Геннадьевна
  • Носова Ольга Андреевна
  • Штыков Вячеслав Алексеевич
RU2617881C2

Реферат патента 2010 года ПОЛУПРОВОДНИКОВАЯ ИНТЕГРАЛЬНАЯ СХЕМА (ВАРИАНТЫ)

Изобретения относятся к области электронной техники, в частности к конструированию и технологии изготовления полупроводниковых интегральных схем (ИС), и могут быть использованы в цифровых, аналоговых и запоминающих устройствах микроэлектроники. Техническими результатами, которые могут быть получены при осуществлении изобретений, являются увеличение степени интеграции ИС, уменьшение топологического размера элемента, снижение уровня межэлектродных соединений, снижение потребляемой мощности на одно переключение, повышение надежности. Сущность изобретения: в полупроводниковой интегральная схеме, содержащей высокоомный монокристаллический кремниевый слой, выращенный в виде полого цилиндра, в котором сформированы области разного типа проводимости, образующие биполярные транзисторы, резисторы и конденсаторы, на внешней поверхности высокоомного монокристаллического кремниевого слоя сформированы эмиттерные и базовые контакты, прилегающие к соответствующим областям соответствующих транзисторов, соединенные с резисторами и конденсаторами токоведущими дорожками, сформированными на поверхности диэлектрика, размещенного на внешней поверхности высокоомного монокристаллического кремниевого слоя, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован коллекторный контакт в виде полого цилиндра, прилегающий к коллекторным областям транзисторов или к примыкающему к ним кремниевому слою. 2 н. и 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 400 864 C2

1. Полупроводниковая интегральная схема, содержащая высокоомный монокристаллический кремниевый слой p-типа, выращенный в виде полого цилиндра, в котором сформированы области разного типа проводимости, образующие биполярные транзисторы, резисторы и конденсаторы, на внешней поверхности высокоомного монокристаллического кремниевого слоя сформированы эмиттерные и базовые контакты, прилегающие к соответствующим областям соответствующих транзисторов, соединенные с резисторами и конденсаторами токоведущими дорожками, сформированными на поверхности диэлектрика, размещенного на внешней поверхности высокоомного монокристаллического кремниевого слоя, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован коллекторный контакт в виде полого цилиндра, прилегающий к коллекторным областям транзисторов или к примыкающему к ним кремниевому слою p-типа.

2. Полупроводниковая интегральная схема по п.1, отличающаяся тем, что токоведущие дорожки и эмиттерные, базовые и коллекторный контакты состоят из двух слоев из разных немагнитных металлов, причем слои сформированы таким образом, что слой, расположенный со стороны высокоомного монокристаллического кремниевого слоя, имеет меньшую удельную проводимость в направлении протекания электрического тока, чем удельная проводимость другого слоя в том же направлении.

3. Полупроводниковая интегральная схема, содержащая высокоомный монокристаллический кремниевый слой n-типа, выращенный в виде полого цилиндра, в котором сформированы области разного типа проводимости, образующие биполярные транзисторы, резисторы и конденсаторы, на внешней поверхности высокоомного монокристаллического кремниевого слоя сформированы коллекторные и базовые контакты, прилегающие к соответствующим областям соответствующих транзисторов, соединенные с резисторами и конденсаторами токоведущими дорожками, сформированными на поверхности диэлектрика, размещенного на внешней поверхности высокоомного монокристаллического кремниевого слоя, а на внутренней поверхности высокоомного монокристаллического кремниевого слоя образован эмиттерный контакт в виде полого цилиндра, прилегающий к эмиттерным областям транзисторов или к примыкающему к ним кремниевому слою n-типа.

Документы, цитированные в отчете о поиске Патент 2010 года RU2400864C2

US 5945725 A, 31.08.1999
ПОЛУПРОВОДНИКОВЫЙ ПРИБОР 1986
  • Монахов А.Ф.
SU1414238A1
БИПОЛЯРНЫЙ ТРАНЗИСТОР 2000
  • Кожитов Л.В.
  • Кондратенко Т.Т.
  • Крапухин В.В.
  • Тимошина Г.Г.
  • Кондратенко Т.Я.
RU2173916C1
ТИРИСТОР 2000
  • Кожитов Л.В.
  • Крапухин В.В.
  • Кондратенко Т.Т.
  • Тимошина Г.Г.
  • Кондратенко Т.Я.
RU2173917C1
US 2008111164 A1, 15.05.2008.

RU 2 400 864 C2

Авторы

Кондратенко Тимофей Тимофеевич

Кондратенко Тимофей Яковлевич

Кожитов Лев Васильевич

Чарыков Николай Андреевич

Монахов Александр Федорович

Кузнецов Евгений Викторович

Гамкрелидзе Сергей Анатольевич

Абрамов Павел Иванович

Даты

2010-09-27Публикация

2008-09-22Подача