СПОСОБ ИЗМЕРЕНИЯ ПРИ БОКОВОМ КАРОТАЖЕ СКВАЖИН Российский патент 2010 года по МПК G01V3/20 

Описание патента на изобретение RU2402047C1

Изобретение относится к геофизическим методам исследования разрезов нефтегазовых скважин и, в частности, к трехэлементному боковому каротажу, предназначенному для измерения кажущихся удельных сопротивлений горных пород.

Известен способ измерения при боковом каротаже трехэлектродным зондом (см., например, С.С.Итенберг, Т.Д.Дахкильгов. Геофизические исследования в скважинах. М.: «Недра», 1982. С.108, 131, 132), при котором на центральный и экранные электроды зонда, соединенные между собой для уравнивания их потенциалов электрическим шунтом малого (≈0,01 Ом) сопротивления, подают питающий переменный ток, измеряют ток I0 центрального электрода и потенциал ΔU экранных электродов относительно электрода сравнения и определяют кажущееся удельное сопротивление ρк горных пород из соотношения: где k - коэффициент зонда. При этом низкоомный шунт реализуют с помощью входного трансформатора тока центрального электрода и резистора, включенного параллельно его вторичной обмотке.

Этот способ измерения дает удовлетворительные результаты при не слишком низких удельных сопротивлениях (>0,1 Ом·м) бурового раствора.

Однако уравнивание потенциалов производится с некоторым приближением, и между центральным и экранными электродами зонда существует небольшая разность потенциалов, которая искажает поле зонда и в конечном итоге вводит погрешность в результаты измерений тем большую, чем меньше удельное сопротивление бурового раствора, заполняющего скважину. Погрешность измерения при этом может достигать 100% (см. В.Т.Чукин и др. О влиянии неравенства потенциалов электродов зонда на результаты трехэлектродного бокового каротажа. В сб.: «Прикладная геофизика». Вып.39, М.: «Недра», 1964. С.114-122).

Искажение поля зонда, вызванное неравенством потенциалов, и связанная с этим погрешность измерений приводят к нарушению постоянства коэффициента зонда в выражении (1).

Известен способ измерения (см. Мельников А.Г. К вопросу выравнивания потенциалов электродов в приборах бокового каротажа типа БК-3. НТВ «Каротажник». 2004. Вып.8 (121). С.51-53), в котором уравнивание потенциалов электродов зонда производится с помощью операционного усилителя, входы которого подключаются к вторичной обмотке входного трансформатора тока центрального электрода. На систему электродов подают питающий переменный ток, измеряют ток центрального электрода и потенциал экранных электродов относительно электрода сравнения и определяют кажущееся удельное сопротивление горных пород из соотношения (1).

В этом способе измерения приведенное сопротивление между электродами зонда снижается до 0,0035 Ом, что повышает точность измерений.

Однако такие результаты достигаются тогда, когда входной трансформатор тока центрального электрода располагается в непосредственной близости от центрального и экранного электродов зонда, и сопротивлением соединительных проводов можно пренебречь. Это возможно не всегда. Так в аппаратуре бокового каротажа, используемой для измерений в процессе бурения скважины, центральный и экранный электроды зонда располагаются на внешней поверхности бурильной трубы и соединяются с измерительным электронным блоком проводниками значительной длины (до 2 м) (см., например, А.А.Молчанов. Измерение геофизических и технологических параметров в процессе бурения скважин. М.: «Недра». 1983. С.52-57).

Широкое использование при бурении скважин полимер-солевых буровых растворов с удельным сопротивлением до 0,02 Ом·м усугубляют эту ситуацию. Кроме того, сопротивление проводников зависит от температуры в скважине, что вносит дополнительную температурную погрешность в результаты измерений.

Известен также способ измерения (См. Мельников А.Г. К вопросу выравнивания потенциалов электродов в приборах бокового каротажа типа БК-3. НТВ «Каротажник». 2004. Вып.8 (121). С51-53), принятый за прототип, в котором уравнивание потенциалов электродов зонда осуществлено с помощью операционного усилителя, входы которого подключаются непосредственно к центральному и экранному электродам зонда. На систему электродов подают питающий переменный ток, измеряют ток I0 центрального электрода и его потенциал ΔU относительно электрода сравнения и определяют кажущееся удельное сопротивление горных пород из соотношения:

Использование в этом способе бестрансформаторной схемы уравнивания потенциалов позволяет устранить влияние соединительных проводников и температурных изменений их сопротивлений на результаты измерений.

Недостатком является низкая устойчивость операционного усилителя в такой схеме измерения, что приводит к его самовозбуждению и, соответственно, резкому снижению точности измерений или вообще невозможности их проведения.

Задачами настоящего изобретения являются повышение точности измерений и надежности их выполнения.

Это достигается тем, что в способе измерения при боковом каротаже скважин, в котором на электрически соединенные между собой центральный и экранные электроды зонда подают питающий переменный ток, измеряют ток I0 центрального электрода и потенциал ΔU экранных электродов относительно электрода сравнения, вычисляют отношение по которому судят о кажущемся удельном сопротивлении ρк горных пород, дополнительно в процессе каротажа измеряют удельное сопротивление ρс бурового раствора и температуру t° в скважине, определяют сопротивление r0t цепи, соединяющей центральный и экранный электроды, при температуре t° из соотношения: r0t=r0(1+α·Δt°), где r0 - сопротивление цепи, предварительно измеренное при 20°С; Δt=t°-20°; α - температурный коэффициент сопротивления, после чего определяют ρk по предварительно рассчитанным зависимостям для ряда значений удельного сопротивления пласта, сопротивления r0 и номинального диаметра скважины.

Таким образом, в предлагаемом способе строгое уравнивание потенциалов электродов зонда не является обязательным, поскольку влияние неравенства потенциала учитывается в расчетных зависимостях, а коэффициент зонда ввиду его непостоянства в этом случае не используется для определения ρk.

Это снижает требования к схеме измерения тока центрального электрода, в качестве которой может быть использована традиционная трансформаторная схема и могут применяться достаточно длинные соединительные провода.

Расчетные зависимости могут быть получены в результате математического моделирования методом интегральных уравнений (см., например, Р.А.Кучеров. К расчету поля зондов бокового каротажа в пластах ограниченной мощности при наличии скважины. Известия высших учебных заведений. Геология и разведка. 1980. №7. С.93-96).

На чертеже приведен пример зависимостей рассчитанных для удельных сопротивлений ρn пластов от 0,25 до 4096 Ом·м, r0=0,25 Ом и диаметра dk скважины 0,125 м.

Способ осуществляют следующим образом. Скважинную аппаратуру бокового каротажа дополнительно оснащают резистивиметром и термометром, а наземную часть дополняют компьютеризованным вычислительным блоком, в память которого вводят предварительно измеренное значение сопротивления r0 цепи, соединяющей центральный и экранный электроды, предварительно рассчитанные зависимости и номинальный диаметр скважины.

В процессе каротажа измеряют ток I0 центрального электрода, потенциал ΔU экранных электродов относительно электрода сравнения, удельное сопротивление ρс бурового раствора и температуру t°. Результаты измерений поступают в вычислительный блок, с помощью которого вычисляют отношение и сопротивление r0t. Исходя из значений r0t и dн, из памяти вычислительного блока извлекают соответствующую им зависимость по которой, используя измеренные значения отношения и удельного сопротивления ρс, определяют кажущееся удельное сопротивление ρk горных пород. При необходимости при выборе зависимости и определении ρk используют линейную интерполяцию.

Значение температурного коэффициента α для конкретного металла проводников выбирают по справочным данным или определяют экспериментально. Так для медных проводников α=0,0039 град-1.

Предлагаемый способ позволяет повысить точность измерения кажущихся удельных сопротивлений и надежность их выполнения.

Кроме того, в этом способе автоматически учитывается и влияние скважины на результаты измерений, так как зависимости рассчитаны для условий пласта, пересеченного скважиной. Так, в непроницаемых пластах кажущееся сопротивление ρk, определенное по данному способу, будет соответствовать удельному сопротивлению ρn пласта.

Похожие патенты RU2402047C1

название год авторы номер документа
СПОСОБ БОКОВОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Королев Владимир Алексеевич
  • Сугак Владимир Михайлович
RU2421759C1
КОМПЛЕКСНАЯ ГЕОФИЗИЧЕСКАЯ АППАРАТУРА НА БУРИЛЬНЫХ ТРУБАХ (ВАРИАНТЫ) 2009
  • Королев Владимир Алексеевич
  • Сугак Владимир Михайлович
RU2401944C1
СПОСОБ БОКОВОГО ЭЛЕКТРИЧЕСКОГО ЗОНДИРОВАНИЯ 2012
  • Степанов Андрей Степанович
  • Кашик Алексей Сергеевич
RU2592716C2
Устройство для бокового каротажа скважин 1981
  • Королев Владимир Алексеевич
  • Мечетин Виктор Федорович
SU983621A1
УСТРОЙСТВО ДЛЯ КАРОТАЖНЫХ ЭЛЕКТРОМАГНИТНЫХ СКАНИРУЮЩИХ ЗОНДИРОВАНИЙ 2010
  • Королев Владимир Алексеевич
  • Сугак Владимир Михайлович
RU2421760C1
Устройство для бокового каротажа скважин 1982
  • Мечетин Виктор Федорович
  • Королев Владимир Алексеевич
SU1022107A1
СПОСОБ ОЦЕНКИ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПЛАСТА ПРИ ПРОВЕДЕНИИ ИССЛЕДОВАНИЙ СКВАЖИН, ОБСАЖЕННЫХ МЕТАЛЛИЧЕСКОЙ КОЛОННОЙ 2011
  • Гулимов Александр Викторович
  • Даниленко Виталий Никифорович
RU2478223C1
Устройство для каротажных электрических зондирований 1985
  • Королев Владимир Алексеевич
  • Мечетин Виктор Федорович
SU1257593A1
Зонд бокового каротажа 1982
  • Барминский Адольф Георгиевич
  • Кулигин Аркадий Антонович
  • Кучеров Руслан Алексеевич
  • Проскурин Владимир Иванович
SU1053045A1
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН 2009
  • Рыхлинский Николай Иванович
  • Бродский Петр Абрамович
  • Кашик Алексей Сергеевич
  • Лисовский Сергей Николаевич
  • Цой Валентин
  • Лохматов Владимир Михайлович
RU2382385C1

Реферат патента 2010 года СПОСОБ ИЗМЕРЕНИЯ ПРИ БОКОВОМ КАРОТАЖЕ СКВАЖИН

Использование: в методе трехэлектродного бокового каротажа, предназначенном для измерения кажущихся удельных сопротивлений горных пород в нефтегазовых скважинах. Технический результат: повышение точности измерений и надежности их выполнения, автоматический учет влияния скважины. Сущность: на электрически соединенные между собой центральный и экранные электроды зонда подают питающий переменный ток. Измеряют ток I0 центрального электрода и потенциал ΔU экранных электродов относительно электрода сравнения. В процессе каротажа измеряют также удельное сопротивление ρс бурового раствора и температуру t° в скважине. Определяют сопротивление r0t цепи, соединяющей центральный и экранные электроды, при температуре t° из соотношения: r0t=r0(i+α·Δt°), где r0 - сопротивление цепи, предварительно измеренное при 20°С; Δt=t°-20°; α-температурный коэффициент сопротивления. Далее вычисляют отношение и определяют кажущееся удельное сопротивление ρk горных пород по предварительно рассчитанным зависимостям для ряда значений удельного сопротивления пласта, сопротивления r0 и номинального диаметра скважины. 1 ил.

Формула изобретения RU 2 402 047 C1

Способ измерения при боковом каротаже скважин, в котором на электрически соединенные между собой центральный и экранные электроды зонда подают питающий переменный ток, измеряют ток I0 центрального электрода и потенциал ΔU экранных электродов относительно электрода сравнения, вычисляют отношение , по которому судят о кажущемся удельном сопротивлении горных пород, отличающийся тем, что дополнительно в процессе каротажа измеряют удельное сопротивление ρc бурового раствора и температуру t° в скважине, определяют сопротивление r0t цепи, соединяющей центральный и экранные электроды, при температуре t° из соотношения: r0t=r0(1+α·Δt°), где r0 - сопротивление цепи, предварительно измеренное при 20°С; Δt=t°-20°; α - температурный коэффициент сопротивления, после чего определяют ρk по предварительно рассчитанным зависимостям для ряда значений удельного сопротивления пласта, сопротивления r0 и номинального диаметра скважины.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402047C1

Способ определения физических свойств горных пород по данным электрометрии скважин 1975
  • Касумов Кямал Абдулгусейн
  • Александров Борис Леонтьевич
  • Дергунов Эдмар Николаевич
  • Шилов Геннадий Яковлевич
SU559205A1
Способ определения сопротивления прискваженной зоны проницаемых пластов 1985
  • Шарыгин Генадий Михайлович
SU1278757A1
СПОСОБ БОКОВОГО ЭЛЕКТРИЧЕСКОГО ЗОНДИРОВАНИЯ 2001
  • Кашик А.С.
  • Рыхлинский Н.И.
  • Кривоносов Р.И.
RU2190243C1
Газосмеситель к керогазу 1948
  • Леднев С.Ф.
  • Матвеевский В.Н.
SU79008A1
Способ шаржирования притира шлифовальным материалом 1982
  • Орлова Наталья Игоревна
  • Шустер Лев Шмульевич
  • Вагин Василий Иванович
  • Райский Виталий Валентинович
SU1071416A1

RU 2 402 047 C1

Авторы

Королев Владимир Алексеевич

Сугак Владимир Михайлович

Даты

2010-10-20Публикация

2009-09-08Подача