ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ Российский патент 2010 года по МПК C09K5/06 

Описание патента на изобретение RU2405019C1

Изобретение относится к прикладной химии, конкретнее к теплоаккумулирующим составам, и может быть использовано в различных тепловых аккумуляторах (ТА).

Известны составы, содержащие в качестве основы фторид стронция, хлорид стронция и хлорид натрия, используемые или рекомендуемые в качестве рабочих тел тепловых аккумуляторов. В литературных источниках приведены количественные и фазовые соотношения компонентов композиций солей, получение и преимущественная область применения (Справочник по плавкости из безводных неорганических солей. Системы тройные и более сложные / Под. общ. ред. Н.К.Воскресенской. - М. - Л.: АН СССР, 1961. - Т.2. - С.586; Бухалова Г.А. Система Na, Sr // F, Cl. - М.: СФХА, 1955. - Т.26. - Вып.138. - С.476-477; Гасаналиев A.M. Гаматаева Б.Ю. Система из фторидов и хлоридов натрия, стронция и бария // Журн. неорган. химии, 1980. - Т.25. - Вып.5. - С.1378-1381).

Недостатками этих составов являются низкие энтальпия плавления, плотность и электропроводность.

Известны теплоаккумулирующие составы, которые перспективны для использования их в качестве рабочих тел в тепловых аккумуляторах.

По составу ингредиентов и их физико-химическим свойствам близок к заявленной солевой композиции состав, который содержит указанные ингредиенты в следующих количествах, мас.%:

фторид стронция - 5,0

хлорид стронция - 70,0

хлорид натрия - 25,0

(Справочник по плавкости из безводных неорганических солей. Системы тройные и более сложные / Под. общ. ред. Н.К.Воскресенской. - М. - Л.: АН СССР, 1961. - Т.2. - С.586).

Недостатками данного состава являются низкие физико-химические характеристики, такие как температура плавления, удельная энтальпия плавления, плотность, электропроводность.

Данный теплоаккумулирующий состав выбран авторами в качестве прототипа.

Техническим результатом является повышение энтальпии плавления, плотности и электропроводности, за счет ввода компонента, обладающего большей плотностью и электропроводностью.

Технический результат достигается тем, что в состав, содержащий фторид стронция, хлорид стронция и хлорид натрия, дополнительно введен вольфрамат стронция при следующем соотношении компонентов, мас.%:

фторид стронция 2,3-2,7

хлорид стронция 65,9-66,4

хлорид натрия 22,3-22,8

вольфрамат стронция 8,5-9,0

Заявляемый состав получен в результате исследования стабильного фазового единичного блока (ФЕБа) SrF2·SrCl2 - SrCl2 - (NaCl)2 - SrWO4, полученного при дифференциации четверной взаимной системы Na, Sr || F, Cl, WO4 методом графов.

Для выполнения технического задания в ФЕБе определены характеристики четверной эвтектики, так как эвтектический состав улучшает конвективный теплообмен.

Для экспериментального изучения ФЕБ представлен правильным тетраэдром.

Все данные по составам выражены в эквивалентных процентах, температура - °С.

Экспериментальные исследования проведены дифференциальным термическим и частично визуально-политермическим методами физико-химического анализа (Уэндландт У. Термические методы анализа. - М.: Мир, 1978. - 528 с.).

Для записи кривых нагревания (охлаждения) дифференциальным термическим анализом использован потенциометр ЭПП09МЗ, в качестве усилителя термоЭДС дифференциальной термопары применен фотоусилитель Ф 116/1. Исследования проведены в платиновых микротиглях с использованием платино-платинородиевых термопар (Pt/Pt -Rh).

Таблица 1 Характеристики тройных нонвариантных точек стабильного комплекса SrCl2 - SrWO4 - (NaCl)2 - SrF2·SrCl2 четверной взаимной системы Na, Sr || F, Cl, WO4 Характер точки Обозначение точки t, °C Состав, экв. доли, в % Твердые равновесные фазы (NaCl)2 SrWO4 SrCl2 SrF2·SrCl2 Эвтектика Е1 499 33,5 5,2 61,3 SrWO4, SrCl2, NaCl Эвтектика Е2 545 28,3 - 61,6 10,1 NaCl, SrCl2, SrF2·SrCl2 Эвтектика Е3 769 68,4 8,3 - 23,3 SrWO4, NaCl, SrF2·SrCl2 Эвтектика Е4 761 - 5,8 87,5 6,7 SrCl2, SrWO4, SrF2·SrCl2

Визуально-политермический анализ проведен с использованием печи СШОЛ, Pt/Pt-Rh термопары, милливольтметра М 1109 с зеркальным отсчетом. Холодные спаи термопары термостатировались при 0°С в сосуде Дьюара с тающим льдом.

Рентгенофазовый анализ эвтектики проведен на дифрактометре ДРОН -2,0 (излучение CuKα, λ=0,539 Å, никеливый β-фильтр). Образцы для РФА отжигались 9-10 часов и затем проведена закалка погружением тигля в тающий лед.

Плотность расплава эвтектики измерена методом гидростатического взвешивания платинового шарика на весах ВЛР. Температура расплавленной смеси измерена с помощью калиброванной платино-платинородиевой термопары.

Для измерения электропроводности использован мост переменного тока Р 5021.

Квалификация солей «химически чистые».

Для достижения цели предлагаемого изобретения приводим теоретические и экспериментальные исследования по определению характеристик четверной эвтектики Е 495°С, предлагаемой в качестве теплоаккумулирующего состава для ТА.

На фиг.1 представлена топология ограняющих элементов тетраэдра SrCl2-SrWO4 - (NaCl)2 - SrF2·SrCl2 системы Na, Sr ||F, Cl, WO4,

на фиг.2 - двухмерное сечение АВС тетраэдра SrCl2 - SrWO4 - (NaCl)2 - SrF2·SrCl2 четверной взаимной системы Na, Sr || F, Cl, WO4,

на фиг.3 - диаграмма состояния одномерного политермического разреза MN сечения АВС тетраэдра SrCl2 - SrWO4 - (NaCl)2 - SrF2·SrCl2 объема кристаллизации вольфрамата стронция,

на фиг.4 - определение состава четверной эвтектики 495 тетраэдра SrCl2 - SrWO4 - (NaCl)2 - SrF2·SrCl2 системы Na, Sr || F, Cl, WO4.

Исследования проведены проекционно-термографическим методом (Васильченко Л.М. Рациональные подходы к исследованию многокомпонентных солевых систем и их реализация. Дис.… д.х.н. - Самара, 2000. - 245 с. Васильченко Л.М., Трунин А.С. Исследование четверной взаимной системы Na, К || F, Cl, WO4 конверсионным и проекционно-термографическим методами // Журн. неорг. химии. - 1980. - Т. XXV. - Вып.3. - С.822-832).

На основании анализа четырех тройных систем огранения тетраэдра SrCl2 - SrWO4 - (NaCl)2 - SrF2·SrCl2 (фиг.1) выбрано для исследования двухмерное сечение АВС в объеме кристаллизации вольфрамата стронция с постоянным его содержанием, равным 15 экв. % (фиг.1, 2). На стороны сечения АВС нанесены центральные проекции тройных нонвариантных точек элементов огранения тетраэдра. Учитывая расположение нонвариантных точек, выбран для экспериментального исследования наиболее рациональный одномерный политермический разрез MN (фиг.2). Диаграмма состояния разреза MN (фиг.3) позволяет определить центральную проекцию четверной эвтектики 495 на сечении АВС геометрическим построением - пересечением двух разрезов, проходящих через точки 3 и 9, и соответственно вершины В и С (фиг.2, 3). В точках 3 и 9 (фиг.3) за совместной кристаллизацией двух фаз наступает нонвариантное равновесие - 495.

Состав четверной эвтектики определен из диаграммы (фиг.3) состояния одномерного разреза, проходящего через центральную проекцию 495 сечения АВС и вершину вольфрамата стронция.

Таким образом, при изучении только двух одномерных разрезов, а не трех, определен состав четверной эвтектики 495 (фиг.4), в которой, экв. %: 6,00 SrF2·SrCl2; 60,52 SrCl2; 29,48 (NaCl)2; 4,0 SrWO4.

Дифференциальным термическим анализом определена энтальпия плавления, составляющая 315 кДж·кг-1 (Васильченко Л.М., Чертыковцева Н.В. Использование дифференциального термического анализа для рационального изучения фазовых комплексов систем и определения энтальпий плавления. - Самара: Самарская гос. академия строительства и архитектуры, сб. трудов XIII Всерос. конф. по терм. анализу. - 2003. - С.80-84).

Получены политермы плотности трех низкоплавких составов. Из анализа политерм следует, что при увеличении температуры от 500 до 800°С плотность изменяется линейно, уменьшается на 5-8%, соответственно увеличивается объем расплава. При температуре 505°С плотность составляет 3,6·103 кг·м-3.

Температурная зависимость электропроводности близка к экспоненциальной. При температуре 505°С составляет 200 Ом-1·м-1. Электропроводность позволяет судить о строении расплава, природе частиц, переносящих ток, и оценке их подвижности.

Низкоплавкие составы изученного единичного блока SrCl2-SrWO4-(NaCl)2-SrF2·SrCl2 с энтальпией плавления 315 кДж·кг-1, плотностью 3,6·103 кг·м-3 и электропроводностью 200 Ом-1·м-1 являются перспективными фазопереходными материалами для аккумулирования тепла в диапазоне температур 500-800°С и могут быть использованы в различных тепловых аккумуляторах.

Как видно из таблицы 2, физико-химические характеристики, а, именно, энтальпия плавления, плотность и электропроводность увеличены, что значительно превышает те же величины у известного состава. Заявленный состав является эвтектикой 495°С. Оптимальная добавка вольфрамата стронция составляет 8,5-9,0 мас.%.

Приводим 3 примера экспериментального исследования трех составов при среднем и граничных (нижнем и верхнем) соотношениях ингредиентов. Для этого в электропечи шахтного типа переплавляют в платиновом тигле безводные соли квалификации «х.ч». Составы образцов, содержащие компоненты (в мас.%):

Пример 1 (со средними количественными соотношениями ингредиентов): 0,352 г (8,8 мас.%) вольфрамата стронция+0,904 г (22,6 мас.%) хлорида натрия + 0,1 г (2,5 мас.%) фторида стронция+2,644 г (66,1 мас.%) хлорида стронция.

Температура плавления смеси 495°С. Удельная энтальпия плавления 315 кДж·кг-1. Плотность расплава 3,6·103 кг·м-3. Электропроводность расплава 2,0·102 Ом-1·м-1.

Пример 2 (с нижним граничным соотношением ингредиентов): 0,343 г (8,5 мас.%) вольфрамата стронция + 0,9 г (22,3 мас.%) хлорида натрия + 0,09 г (2,3 мас.%) фторида стронция + 2,60 г (65,9 мас.%) хлорида стронция.

Температура плавления смеси 494°С. Удельная энтальпия плавления 314 кДж·кг-1. Плотность расплава 3,5·103 кг·м-3. Электропроводность расплава 1,8·102 Ом-1·м-1.

Пример 3 (с верхним граничным соотношением ингредиентов): 0,357 г (9,0 мас.%) вольфрамата стронция + 0,904 г (22,8 мас.%) хлорида натрия + 0,108 г (2,7 мас.%) фторида стронция + 2,63 г (66,4 мас.%) хлорида стронция.

Температура плавления смеси 496°С. Удельная энтальпия плавления 318 кДж·кг-1. Плотность расплава 3,7·103 кг·м-3. Электропроводность расплава 2,4·102 Ом-1·м-1.

Предлагаемый теплоаккумулирующий состав обеспечивает работоспособность теплового аккумулятора в температурном диапазоне 494-496°С; имеет: удельную энтальпию плавления 315 кДж·кг-1, плотность - 3,6·103 кг·м-3, электропроводность - 2,0·102 Ом-1·м-1 и обладает повышенным конвективным теплообменом за счет однородности эвтектического состава.

Физико-химические характеристики (энтальпия плавления, плотность и электропроводность) состава прототипа невысоки, что установлено экспериментальными исследованиями заявителей теплоаккумулирующего состава. Энтальпия плавления, плотность и электропроводность являются основными критериями выбора теплоаккумулирующих составов. Низкая плотность приводит к уменьшению удельной теплоемкости, а следовательно, и количества аккумулированного тепла в объеме материала.

Предлагаемый авторами состав теплоаккумулирующего материала дает возможность получения более компактного материала. Состав обладает большей электропроводностью, что увеличивает перенос тепла теплоносителю и обладает повышенным конвективным теплообменом за счет однородности эвтектического состава.

Похожие патенты RU2405019C1

название год авторы номер документа
НИЗКОПЛАВКАЯ ТЕПЛОАККУМУЛИРУЮЩАЯ СОЛЕВАЯ СМЕСЬ 2012
  • Гасаналиев Абдулла Магомедович
  • Гаматаева Барият Юнусовна
  • Расулов Абутдин Исамутдинович
  • Тагзиров Магомед Тагзирович
RU2524959C2
Низкоплавкая солевая смесь 1979
  • Трунин Александр Сергеевич
  • Мифтахов Тимерхан Тимергалиевич
  • Селеменев Анатолий Петрович
  • Гниломедов Алексей Алексеевич
  • Космынин Александр Сергеевич
SU816962A1
ТЕПЛОАККУМУЛИРУЮЩАЯ СОЛЕВАЯ КОМПОЗИЦИЯ 2015
  • Гасаналиев Абдулла Магомедович
  • Гаматаева Барият Юнусовна
  • Расулов Абутдин Исамутдинович
  • Тагзиров Магомед Тагзирович
  • Магомедов Рамазан Рагимович
RU2654044C2
ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ 2011
  • Гаркушин Иван Кириллович
  • Игнатьева Елена Олеговна
  • Дворянова Екатерина Михайловна
RU2495900C2
Теплоаккумулирующий состав 2016
  • Вердиев Надинбег Надинбегович
  • Омарова Сабина Мурадовна
  • Арбуханова Патимат Абдулаевна
  • Магомедбеков Умумаали Гаджиевич
  • Некрасов Дмитрий Анатольевич
  • Искендеров Эльдар Гаджимурадович
  • Амиров Ахмед Магомедрасулович
RU2628613C1
ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ 2011
  • Вердиев Надинбег Надинбегович
  • Вердиева Заира Надинбеговна
  • Мустафаев Нариман Абдулбасирович
  • Магомедова Хадижат Гусехмаевна
RU2458096C1
Низкоплавкая теплоаккумулирующая солевая смесь 2022
  • Байсангурова Айшат Алаудиновна
  • Кочкаров Жамал Ахматович
RU2799874C1
Низкоплавкая теплоаккумулирующая солевая смесь 2023
  • Байсангурова Айшат Алаудиновна
  • Кочкаров Жамал Ахматович
  • Жижуев Руслан Асланович
RU2813183C1
ТЕПЛОНОСИТЕЛЬ ИЗ ГАЛОГЕНИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ 2022
  • Вердиева Заира Надинбеговна
  • Алхасов Алибек Басирович
  • Вердиев Надинбег Надинбегович
  • Амиров Ахмед Магомедрасулович
RU2817998C2
Теплоаккумулирующая смесь из галогенидов лития, натрия и кальция 2023
  • Вердиева Заира Надинбеговна
  • Алхасов Алибек Басирович
  • Мусаева Патимат Абдулаевна
  • Магомедов Магомедрасул Магомедович
  • Вердиев Надинбег Надинбегович
  • Кондратюк Игорь Мирославович
  • Зейналов Мухтар Шахмирзоевич
RU2819041C1

Иллюстрации к изобретению RU 2 405 019 C1

Реферат патента 2010 года ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ

Изобретение относится к теплоаккумулирующему составу, содержащему фторид стронция 2,3-2,7 мас.%, хлорид стронция 65,9-66,4 мас.%, хлорид натрия 22,3-22,8 мас.%, вольфрамат стронция 8,5-9,0 мас.%. Технический результат - повышение энтальпии плавления, плотности и электропроводности. 2 табл., 4 ил.

Формула изобретения RU 2 405 019 C1

Теплоаккумулирующий состав, содержащий фторид стронция, хлорид стронция и хлорид натрия, отличающийся тем, что в него дополнительно введен вольфрамат стронция, мас.%:
фторид стронция 2,3-2,7 хлорид стронция 65,9-66,4 хлорид натрия 22,3-22,8 вольфрамат стронция 8,5-9,0

Документы, цитированные в отчете о поиске Патент 2010 года RU2405019C1

Справочник по плавкости из безводных неорганических солей
Системы тройные и более сложные
/Под ред
Воскресенской И.К
- М.-Л.: Изд-во АН СССР, т.2, 1961, с.586
Теплоаккумулирующая фторидная смесь 1982
  • Гаркушин Иван Кириллович
  • Воронин Константин Юрьевич
  • Трунин Александр Сергеевич
  • Дибиров Мухтар Алиевич
  • Березанская Марина Витальевна
SU1106826A1
Теплоаккумулирующий состав 1985
  • Дибиров Мухтар Алиевич
  • Вердиев Надинбег Надинбегович
  • Султанов Юсуп Исмаилович
  • Гаркушин Иван Кириллович
SU1432084A1
SU 1800835 А1, 10.09.1996.

RU 2 405 019 C1

Авторы

Васильченко Лидия Михайловна

Сотова Наталья Васильевна

Даты

2010-11-27Публикация

2009-04-13Подача