СПОСОБ ПОЛУЧЕНИЯ ГЕНЕРАТОРНОГО ГАЗА ИЗ ТВЕРДОГО ТОПЛИВА В СЛОЕВОМ ГАЗОГЕНЕРАТОРЕ, ОБЕСПЕЧИВАЮЩИЙ ПРИ СЖИГАНИИ ГАЗА УМЕНЬШЕНИЕ ВЫБРОСОВ ОКСИДОВ АЗОТА Российский патент 2010 года по МПК C10J3/46 

Описание патента на изобретение RU2406751C1

Изобретение относится к теплоэнергетической, металлургической, химической и другим теплоиспользующим отраслям промышленности и может быть, в частности, использовано для получения генераторного газа из твердого углеродсодержащего топлива при внутрицикловой газификации углей в парогазовых энергетических установках (ПГУ).

Известен способ получения из твердого топлива в слоевом газогенераторе генераторного газа, предназначенного для последующего сжигания, включающий загрузку газогенератора топливом, создание зоны высокотемпературного горения нижних слоев топлива с подачей в указанную зону газифицирующего агента, выведение из газогенератора образующегося генераторного газа, очистку его от механического уноса и оксидов серы [1] - прототип. Газифицирующий агент подают в нижнюю часть слоя твердого топлива, где образуется высокотемпературная (1750-1900°С) зона горения и идут восстановительные реакции в газах, поднимающихся вверх навстречу опускному движению топлива. Термическое разложение топлива в данном противоточном процессе происходит без доступа кислорода, в результате чего в генераторном газе наряду с такими соединениями, как монооксид углерода (СО), метан (СН4); водород (Н2), углекислый газ (CO2), вода, смолы и пр. образуется аммиак (NH3), присутствие которого нежелательно, так как при сжигании у потребителя генераторного газа до 30% его количества переходит в оксиды азота (NOx). Для их уменьшения приходится применять меры по реконструкции существующих камер сгорания (КС), рассчитанных на сжигание природного газа.

Достигаемым результатом изобретения является уменьшение образования NOx при сжигании генераторного газа за счет снижения содержания аммиака в генераторном газе без необходимости разработки специальной КС, приспособленной для сжигания генераторного газа.

Указанный результат обеспечивается тем, в способе получения из твердого топлива в слоевом газогенераторе генераторного газа, предназначенного для последующего сжигания, включающем загрузку газогенератора топливом, создание зоны высокотемпературного горения нижних слоев топлива с подачей в указанную зону газифицирующего агента, выведение из газогенератора образующегося генераторного газа, очистку его от механического уноса и оксидов серы, согласно изобретению в газифицирующий агент вводят аммиак в количестве, обеспечивающем в зоне горения образование оксидов азота, взаимодействующих в верхних слоях топлива вместе с оксидами азота продуктов горения с аммиаком, выделяющимся при термическом разложении топлива без доступа кислорода.

NOx обычно содержится в продуктах горения в результате соединения кислорода с азотом воздуха и(или) топлива, но, как показали испытания, их количества недостаточно для существенного уменьшения содержания аммиака в генераторном газе. Поэтому для получения необходимого количества NOx аммиак в заранее рассчитанном количестве вводят с газифицирующим агентом (например - воздухом) в зону высокотемпературного горения. При этом в условиях высоких температур, в основном, протекают следующие реакции взаимодействия аммиака с содержащимся в газифицирующем агенте кислородом:

4NH3+5O2=4NO+6H2O

4NH3+7O2=4NO2+6H2O.

Наряду с этими реакциями возможно также взаимодействие аммиака с кислородом с получением воды и молекулярного азота. Это обстоятельство требует введения соответствующей поправки в расчет необходимого количества вводимого в газифицирующий агент аммиака. Образованные в результате указанных реакций оксиды азота вместе с оксидами азота продуктов горения взаимодействуют с аммиаком, выделяющимся в газогенераторе при термическом разложении верхних слоев топлива. При этом происходят следующие реакции:

NH3+NO=N2+H2O+H+

NH3+NO2=N2+H2O+ОН-

H++OH-=H2O.

В результате этих реакций содержащийся в генераторном газе аммиак преобразуется в молекулярный азот и воду. Как показали эксперименты, эмиссия NOx при последующем сжигании такого генераторного газа уменьшается приблизительно в 2 раза.

На чертеже изображена принципиальная схема газогенераторной установки высокого давления для осуществления способа согласно изобретению. Установка содержит газогенератор 1 горнового типа со шлюзовым устройством 2 подачи твердого топлива, линией 3 подвода газифицирующего агента, линией 4 подачи в линию 3 аммиака, линией 5 вывода шлака из газогенератора 1 и линией 6 отвода из газогенератора 1 газогенераторного газа.

Предлагаемый способ испытан на экспериментальной газогенераторной установке, включающей газогенератор, систему очистки генераторного газа от механического уноса и оксидов серы и работающую на генераторном газе КС газотурбинного двигателя. Способ иллюстрируется следующим примером.

Пример. Дробленый уголь - антрацит загружали через шлюзовое устройство 2 в работающий под давлением 2,5 МПа газогенератор 1 горнового типа с расходом топлива 62 кг/час. Затем в зону горения с температурой около 1800°С газогенератора 1 по линии 3 подавался газифицирующий агент в виде воздушного дутья без присадки и с разными присадками аммиака, который подавался по линии 4 в линию 3 подачи дутья. Генераторный газ с температурой 750°С выводился из газогенератора 1 по линии 6 на очистку от механического уноса и оксидов серы. Затем генераторный газ сжигали в КС. При этом проводились измерения концентрации аммиака в генераторном газе и концентрации оксидов азота в отходящих газах после сжигания полученного генераторного газа в КС.

Результаты измерений приведены в таблице.

п/п Вид измерения Номера опытов 1 2 3 4 5 1 Расход аммиака, введенного в газифицирующий агент, м3/час при н.у. 0 0,58 0,92 1,2 1,4 2 Концентрация аммиака в генераторном газе, мг/нм3 при н.у. 400 212 98 97 95 3 Концентрация оксидов азота в продуктах сгорания генераторного газа, мг/нм3 при н.у. 12,5 5,9 5,1 5,0 5,5

Как видно из таблицы, при увеличении количества подаваемого в дутьевой воздух аммиака концентрация оксидов азота в продуктах сгорания генераторного газа в начале уменьшается, достигая определенного минимума, а затем начинает увеличиваться. Таким образом, опытным путем в каждом конкретном случае можно уточнить расчетное значение необходимого количества присадки аммиака в газифицирующий агент, обеспечивающее при таком способе максимально возможный уровень концентрации оксидов азота в продуктах сгорания генераторного газа.

Экспериментальные исследования и расчеты показали, что использование способа согласно изобретению в ПГУ на твердом топливе позволяет существенно уменьшить образование оксидов азота без необходимости разработки специальной КС, приспособленной для сжигания генераторного газа.

Источники информации

1. Исследование системы газификации углей с высокотемпературной очисткой генераторного газа / Ольховский Г.Г., Сучков С.И., Епихин А.Н., Крылов И.О., Сомов А.А., Гутник М.Н., Абросимов А.А. // Теплоэнергетика, 2006, №7, с.67-73.

Похожие патенты RU2406751C1

название год авторы номер документа
ГАЗОГЕНЕРАТОР 2018
  • Болотин Николай Борисович
RU2692585C1
ГАЗОГЕНЕРАТОР 2018
  • Болотин Николай Борисович
RU2693343C1
ГАЗОГЕНЕРАТОР 2018
  • Болотин Николай Борисович
RU2695555C1
ГАЗОГЕНЕРАТОРНАЯ ЭЛЕКТРОУСТАНОВКА 2018
  • Болотин Николай Борисович
RU2693961C1
ГАЗОГЕНЕРАТОР 2018
  • Болотин Николай Борисович
RU2686240C1
СПОСОБ УПРАВЛЕНИЯ РЕЖИМОМ РАБОТЫ ГАЗОГЕНЕРАТОРНОЙ ЭЛЕКТРОУСТАНОВКИ И ГАЗОГЕНЕРАТОРНАЯ ЭЛЕКТРОУСТАНОВКА 2018
  • Болотин Николай Борисович
RU2683065C1
СПОСОБ ЗАПУСКА ГАЗОГЕНЕРАТОРНОЙ ЭЛЕКТРОУСТАНОВКИ И ГАЗОГЕНЕРАТОРНАЯ ЭЛЕКТРОУСТАНОВКА 2018
  • Болотин Николай Борисович
RU2683066C1
ГАЗОГЕНЕРАТОРНАЯ ЭЛЕКТРОУСТАНОВКА 2018
  • Болотин Николай Борисович
RU2683064C1
СПОСОБ ПЕРЕРАБОТКИ КОНДЕНСИРОВАННОГО ОРГАНИЧЕСКОГО ТОПЛИВА И ГАЗОГЕНЕРАТОРНАЯ УСТАНОВКА 2014
  • Ходос Александр Викторович
  • Крысанов Олег Николаевич
RU2554953C1
СПОСОБ РАБОТЫ ГАЗОГЕНЕРАТОРНОЙ ЭЛЕКТРОУСТАНОВКИ И ГАЗОГЕНЕРАТОРНАЯ ЭЛЕКТРОУСТАНОВКА 2019
  • Болотин Николай Борисович
RU2712321C1

Иллюстрации к изобретению RU 2 406 751 C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ ГЕНЕРАТОРНОГО ГАЗА ИЗ ТВЕРДОГО ТОПЛИВА В СЛОЕВОМ ГАЗОГЕНЕРАТОРЕ, ОБЕСПЕЧИВАЮЩИЙ ПРИ СЖИГАНИИ ГАЗА УМЕНЬШЕНИЕ ВЫБРОСОВ ОКСИДОВ АЗОТА

Изобретение относится к теплоэнергетической, металлургической и химической промышленности. Может быть использовано для получения генераторного газа из твердого углеродсодержащего топлива. Согласно изобретению в газифицирующий агент вводят аммиак в количестве, обеспечивающем в зоне горения образование оксидов азота, взаимодействующих в верхних слоях топлива вместе с оксидами азота продуктов горения с аммиаком, выделяющимся при термическом разложении топлива без доступа кислорода. Образующийся генераторный газа выводят из газогенератора и подвергают очистке его от механического уноса и оксидов серы. Изобретение позволяет уменьшить образование NOx за счет снижения содержания аммиака в генераторном газе без необходимости разработки специальной камеры сгорания. 1 ил.

Формула изобретения RU 2 406 751 C1

Способ получения из твердого топлива в слоевом газогенераторе генераторного газа, предназначенного для последующего сжигания, включающий загрузку газогенератора топливом, создание зоны высокотемпературного горения нижних слоев топлива с подачей в указанную зону газифицирующего агента, выведение из газогенератора образующегося генераторного газа, очистку его от механического уноса и оксидов серы, отличающийся тем, что в газифицирующий агент вводят аммиак в количестве, обеспечивающем в зоне горения образование оксидов азота, взаимодействующих в верхних слоях топлива вместе с оксидами азота продуктов горения с аммиаком, выделяющимся при термическом разложении топлива без доступа кислорода.

Документы, цитированные в отчете о поиске Патент 2010 года RU2406751C1

ОЛЬХОВСКИЙ Г.Г
и др
Исследование системы газификации углей с высокотемпературной очисткой генераторного газа
- Теплоэнергетика, 2006, №7, с.67-73
Способ газификации угля 1989
  • Клаус Кноп
  • Ахим Дюеркоп
  • Гюнтер Вольтерс
SU1729296A3
СПОСОБ ГАЗИФИКАЦИИ ПОРОШКООБРАЗНОГО ТВЕРДОГО УГЛЕРОДИСТОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ, ИНТЕГРИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ 1993
  • Теренс Ричард Джонсон
  • Энтони Кэмписи
  • Бернард Андерсон
  • Дэвид Маклин Уилсон
  • Дэнх Кван Хюнх
  • Грэм Элдред Плезанс
RU2134713C1
СПОСОБ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ УГЛЕРОДСОДЕРЖАЩЕГО НЕОБРАБОТАННОГО МАТЕРИАЛА ДЛЯ ПОЛУЧЕНИЯ ВОССТАНОВИТЕЛЬНОГО ГАЗА И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Нилссон Бенгт[Se]
RU2075501C1
JP 10204451 A, 04.08.1998
DE 102007035301 A1, 29.01.2009
СПОСОБ ПОЛУЧЕНИЯ ЭКЗОПОЛИСАХАРИДОВ 1992
  • Бобкова Агнесса Николаевна[Ua]
  • Шадрина Людмила Анатольевна[Ua]
RU2107694C1

RU 2 406 751 C1

Авторы

Сучков Сергей Иванович

Заикин Александр Анатольевич

Сомов Александр Анатольевич

Епихин Андрей Николаевич

Даты

2010-12-20Публикация

2009-07-06Подача